Home | Register | Login | Inquiries | Alerts | Sitemap |  


Advanced Search
JKM > Volume 44(2); 2023 > Article
Yu, Kim, Jung, and Lee: Effects of Korean Medicine Treatment at Public Health Center for Post-acute COVID-19 Patients: A Retrospective Case-series of 11 patients

Abstract

Objectives

The purpose of this study is to determine the clinical features of post-acute COVID-19 syndrome and the effectiveness and safety of Korean medicine treatment at the Public health center.

Methods

The study was conducted among 11 patients with post-acute COVID-19 syndrome who attended a single public health center from January to December 2022. We retrospectively analyzed the charts of 11 patients and collected clinical characteristics, previous treatments, Korean medicine treatments, outcome variables (Numeral Rating Scale (NRS), Leicester Cough Questionnaire (LCQ), Visual Analog Scale (VAS)), adverse events, etc.

Results

Of the 11 patients, six were women, and the average age of all patients was 68.27±12.31 years. The most common symptom were cough(n=9, 81.82%) and sore throat(n=9, 81.82%), followed by sputum, fatigue, rhinorrhea, and loss of appetite, etc. All 11 patients were treated with herbal medicine, with Samso-eum(n=6, 54.55%), Yeonkyopaedok-san(n=5, 45.45%), and Haengso-tang(n=3, 27.27%) being the most commonly used. After herbal medicine treatment, the median cough NRS decreased from 5 to 1, and the median sore throat NRS decreased from 4 to 1, both of which were statistically significant. One patient reported adverse event of dyspepsia and heartburn, but it was mild.

Conclusions

The study presented the clinical features of the post-acute COVID-19 syndrome and suggested that Korean medicine treatment at public health centers may be effective and safe in alleviating associated symptoms.

Supplementary Information

Fig. 1
Flow chart for subjects selection
jkm-44-2-132f1.gif
Fig. 2
Frequency of Herbal Medicine Prescriptions
SSE; Samso-eum, YKPDS; Yeonkyopaedok-san, HST; Haengso-tang, SCKBT; Samchulkunbi-tang, SMS; Saengmaek-san, BJIGT; Bojungikgi-tang, BHSST; Banhasasim-tang
jkm-44-2-132f2.gif
Fig. 3
Change of Symptom NRS Before and After Treatments.
a) Cough(n=7) The median pre-treatment NRS is 5 with an interquartile range (IQR) of 2.00, and the median post-treatment NRS is 1 with an IQR of 2.00, b) Sore throat(n=7) The median pre-treatment NRS is 4 with an IQR of 2.50, and the median post-treatment NRS is 1 with an IQR of 1.50
p-value: Wilcoxon signed rank test
* p < 0.05
jkm-44-2-132f3.gif
Table 1
Case Summary of Eleven Patients
Case No. Sex Age BMI Start day of treatment form confirmation Symptoms Comorbidities (⊕ On Medication) Previous treatments Herbal medicine Duration of treatment Adverse event
1 F 37 19.81 36 days 1. Cough
2. Sore throat
3. Sputum
N/A Nonsteroidal antiinflammatory drugs YKPDS 17 days N/A
2 M 73 25.06 26 days 1. Cough
2. Sore throat
3. Sputum
1. Dyslipidemia ⊕
2. Rhinitis
3. Irritable bowel syndrome
4. Atrial fibrillation ⊕
5. h/o Pulmonary Tuberculosis
Antitussives SSE 17 days Dyspepsia Heartburn
3 M 68 26.37 175 days 1. Cough
2. Sore throat
3. Sputum
4. Rhinorrhea
5. Sweating
1. Hypertension ⊕
2. Diabetes mellitus ⊕
3. Dyslipidemia ⊕
4. Rhinitis
N/A 1st SSE
2nd YKPDS
34 days N/A
4 F 59 22.66 70 days 1. Cough
2. Sore throat
3. Fatigue
1. h/o Pulmonary Tuberculosis Steroid inhaler SSE 27 days N/A
5 M 73 23.15 61 days 1. Sore throat
2. Fatigue
1. Hypertension ⊕
2. Rhinitis
3. h/o Pulmonary Tuberculosis
4. Gout ⊕
N/A SSE 30 days N/A
6 M 66 25.90 70 days 1. Cough
2. Sore throat
3. Rhinorrhea
1. Hypertension ⊕
2. Rhinitis
3. h/o Gastric cancer
Nonsteroidal antiinflammatory drugs, Antitussives YKPDS 20 days N/A
7 F 76 N/A 22 days 1. Cough
2. Sputum
3. Fatigue
4. Anorexia
5. Sweating
6. Diarrhea
1. Hypertension ⊕
2. h/o Gastric cancer
N/A 1st SSE & SCKBT
2nd HST & SCKBT
3rd HST & BJIGT
21 days N/A
8 F 81 N/A 180 days 1. Rhinorrhea
2. Fatigue
3. Anorexia
4. Chilling
1. Hypertension ⊕
2. Angina pectoris ⊕
N/A 1st SSE
2nd SCKBT
21 days N/A
9 M 75 N/A 36 days 1. Cough
2. Sore throat
N/A N/A 1st YKPDS & SMS
2nd HST & SMS
3rd HST
21 days N/A
10 F 79 N/A 183 days 1. Cough
2. Sore throat
1. Hypertension ⊕
2. Diabetes mellitus ⊕
Western medication 1st YKPDS
2nd BHSST
3rd YKPDS
14 days N/A
11 F 64 27.24 35 days 1. Cough
2. Sore throat
1. Diabetes mellitus ⊕
2. Dyslipidemia ⊕
N/A HST 10 days N/A
Table 2
Frequency of the Symptoms in Patients
Symptom Number of Patients (%)
Cough 9 (81.82)
Sore throat 9 (81.82)
Sputum 4 (36.36)
Fatigue 4 (36.36)
Rhinorrhea 3 (27.27)
Sweating 2 (18.18)
Anorexia 2 (18.18)
Diarrhea 1 (9.09)
Chilling 1 (9.09)
Table 3
Numeral Rating Scale(NRS) Change of Patients symptoms(Others)
Case No. NRS Change of symptoms (before → after treatment)

Rhinorrhea Sputum Diarrhea Anorexia Fatigue Sweating
3 7→0 N/A N/A N/A N/A N/A
7 N/A 5→1 2→0 6→1 7→2 6→2

참고문헌

1. Central Disease Control Headquarters, Central Disaster Management Headquarters. (2022). The COVID-19 At-Home Treatment Guideline (Ver.7). Korea. Korea Disease Control and Prevention Agency.


2. Kim, Y, Kim, SE, Kim, T, Yun, KW, Lee, SH, & Lee, E, et al. (2022). Preliminary Guidelines for the Clinical Evaluation and Management of Long COVID. Infect Chemother, 54(3), 566-597. 10.3947/IC.2022.0141


3. Groff, D, Sun, A, Ssentongo, AE, Ba, DM, Parsons, N, & Poudel, GR, et al. (2021). Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open, 4(10), e2128568. 10.1001/JAMANETWORKOPEN.2021.28568
crossref

4. Kim, Y, Bitna-Ha, , Kim, SW, Chang, HH, Kwon, KT, & Bae, S, et al. (2022). Post-acute COVID-19 syndrome in patients after 12 months from COVID-19 infection in Korea. BMC Infect Dis, 22(1), 93. 10.1186/S12879-022-07062-6


5. Kim, D, Jerng, UM, & Lee, JY. (2022). An Overview of Clinical Features, and Medical Access Among Patients with Post-Acute COVID-19 Syndromes: Analysis of a Nationwide Survey in Korea. Perspect Integr Med, 1(1), 21-33. 10.56986/PIM.2022.09.005


6. Kim, Y, Kim, SW, Chang, HH, Kwon, KT, Bae, S, & Hwang, S. (2021). Significance and Associated Factors of Long-Term Sequelae in Patients after Acute COVID-19 Infection in Korea. Infect Chemother, 53(3), 463-476. 10.3947/IC.2021.0022


7. Hale, N, Meit, M, Pettyjohn, S, Wahlquist, A, & Loos, M. (2022). The implications of long COVID for rural communities. J Rural Health, 38(4), 945-947. 10.1111/JRH.12655


8. Lee, JH. (2016). The Regional Health Inequity, and Individual and Neighborhood Level Health Determinants. Heal Soc Welf Rev, 36(2), 345-384. 10.15709/HSWR.2016.36.2.345
crossref

9. An S, Kim N, Kim Y. (2019). Comparison of Health Status and the Effectiveness of Health Cost between Rural and Urban Residents. Korea Rural Economic Institute.


10. Pang, W, Yang, F, Zhao, Y, Dai, E, Feng, J, & Huang, Y, et al. (2022). Qingjin Yiqi granules for post-COVID-19 condition: A randomized clinical trial. J Evid Based Med, 15(1), 30-38. 10.1111/JEBM.12465


11. An, X, Peng, B, Huang, X, Jiang, H, Xiong, Z, & Zhang, H, et al. (2022). Ludangshen oral liquid for treatment of convalescent COVID-19 patients: a randomized, double-blind, placebo-controlled multicenter trial. Chin Med, 17(1), 1-8. 10.1186/S13020-022-00602-X


12. Jang, S, Kim, D, Yi, E, Choi, G, Song, M, & Lee, EK. (2021). Telemedicine and the Use of Korean Medicine for Patients With COVID-19 in South Korea: Observational Study. JMIR Public Heal Surveill, 7(1), e20236. 10.2196/20236
crossref

13. Park, J, Hong, S, Shin, JW, Kim, KI, Lee, BJ, & Jung, HJ, et al. (2022). Effects of Korean Medicine Treatment in Post-acute COVID-19 Syndrome: A Retrospective Case Series of 15 Patients. J Intern Korean Med, 43(3), 396-412. 10.22246/JIKM.2022.43.3.396


14. Jeon, C, Choi, D, Kim, G, Kim, H, Leem, J, & Chi, GY, et al. (2022). Effect of Non-contact Korean Medical Treatment for Patients Recovering at Home with Positive Coronavirus Disease 2019 Diagnostic Test Results at a Local Public Health Center: A Retrospective Chart Review. J Physiol Pathol Korean Med, 36(4), 130-137. 10.15188/KJOPP.2022.08.36.4.130


15. Yu, CH. (2022). A Case Report of a Patient with Long COVID Complaining of Cough and Sore throat Treated with Hyunggaeyungyo-tang and Saengmaek-san. J Korean Med, 43(3), 204-210. 10.13048/JKM.22041
crossref

16. The jamovi project. 2022. jamovi (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org


17. Long COVID or Post-COVID Conditions | CDC. Accessed February 20, 2023. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html


18. Su, Y, Yuan, D, Chen, DG, Ng, RH, Wang, K, & Choi, J, et al. (2022). Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 185(5), 881-895.e20. 10.1016/J.CELL.2022.01.014
crossref

19. Merzon, E, Weiss, M, Krone, B, Cohen, S, Ilani, G, & Vinker, S, et al. (2022). Clinical and Socio-Demographic Variables Associated with the Diagnosis of Long COVID Syndrome in Youth: A Population-Based Study. Int J Environ Res Public Health, 19(10), 10.3390/IJERPH19105993
crossref

20. Tenforde, MW, Kim, SS, Lindsell, CJ, Billig Rose, E, Shapiro, NI, & Files, DC, et al. (2020). Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network - United States, March–June 2020. MMWR Morb Mortal Wkly Rep, 69(30), 993-998. 10.15585/MMWR.MM6930E1
crossref

21. Jung, YH, Ha, EH, Choe, KW, Lee, S, Jo, DH, & Lee, WJ. (2022). Persistent Symptoms After Acute COVID-19 Infection in Omicron Era. J Korean Med Sci, 37(27), e213. 10.3346/JKMS.2022.37.E213


22. Saunders, C, Sperling, S, & Bendstrup, E. (2023). A new paradigm is needed to explain long COVID. Lancet Respir Med, 11(2), e12-e13. 10.1016/S2213-2600(22)00501-X
crossref

23. Jiang, W, Qi, J, Li, X, Chen, G, Zhou, D, & Xiao, W, et al. (2022). Post-infectious cough of different syndromes treated by traditional Chinese medicines: A review. Chinese Herb Med, 14(4), 494-510. 10.1016/J.CHMED.2022.09.002
crossref

24. Song, WJ, & Kim, SH. (2019). New Approach to Chronic Cough: An Introductory Guide Based on Recent Clinical Practice Guidelines. Korean J Med, 94(6), 471-484. 10.3904/KJM.2019.94.6.471


25. Vijayakumar, B, Boustani, K, Ogger, PP, Papadaki, A, Tonkin, J, & Orton, CM, et al. (2022). Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 55(3), 542-556.e5. 10.1016/J.IMMUNI.2022.01.017
crossref

26. McMaster, SR, Wilson, JJ, Wang, H, & Kohlmeier, JE. (2015). Airway-Resident Memory CD8 T Cells Provide Antigen-Specific Protection against Respiratory Virus Challenge through Rapid IFN-γ Production. J Immunol, 195(1), 203-209. 10.4049/JIMMUNOL.1402975


27. Deng, Z, Zhou, W, Sun, J, Li, C, Zhong, B, & Lai, K. (2018). IFN-γ Enhances the Cough Reflex Sensitivity via Calcium Influx in Vagal Sensory Neurons. Am J Respir Crit Care Med, 198(7), 868-879. 10.1164/RCCM.201709-1813OC
crossref

28. Sun, J, Zhan, C, Deng, Z, Luo, W, Chen, Q, & Jiang, M, et al. (2022). Expression of interferon-γ and its effect on cough hypersensitivity in chronic refractory cough patients. Thorax, 77(6), 621-624. 10.1136/THORAXJNL-2021-218403
crossref

29. Phetsouphanh, C, Darley, DR, Wilson, DB, Howe, A, Munier, CML, & Patel, SK, et al. (2022). Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol, 23(2), 210-216. 10.1038/S41590-021-01113-X


30. Krishna, B, Lim, E, Mactavous, L, Jackson, S, Lyons, P, & Bradley, J, et al. (2022). Spontaneous, persistent T-cell dependent IFN-γ release in patients who progress to Long COVID. Prepr (Version 2) available Res Sq, Published online November 21, 2022. 10.21203/RS.3.RS-2034285/V2
crossref

31. Kim, YC, & Song, WJ. (2022). Neuro-Immune Interactions and IFN-γ in Post-Infectious Cough. Allergy Asthma Immunol Res, 14(6), 581-584. 10.4168/AAIR.2022.14.6.581


32. De Araujo-Souza, PS, Hanschke, SCH, & Viola, JPB. (2015). Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res, (2015). 849573. 10.1155/2015/849573


33. Kaech, SM, & Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol, 12(11), 749-761. 10.1038/NRI3307


34. Szabo, SJ, Kim, ST, Costa, GL, Zhang, X, Fathman, CG, & Glimcher, LH. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100(6), 655-669. 10.1016/S0092-8674(00)80702-3
crossref

35. Drae, Yoon, Sin, Hong, Hin, Noh, Sra, Yi, Ihee, Lee, & Jhwan, Lew, et al. (2013). Observation of Inflammatory Marker Levels in Sprague-Dawley Rats with Youngyopaedoc-san-related Anti-atherogenic Effect. J Korean Med, 34(3), 86-95. 10.13048/jkm.13014
crossref

36. KIM, JB, Kang, H, Ahn, KS, Sang, SB, Sung-Hoon, K, & Seung-hoon, C, et al. (2009). Effect of Soyangin-Hyeongbangpaedok-san on Anti-CD3 Stimulated Mouse T Cells In Vivo and In Vitro. J Physiol Pathol Korean Med, 23(3), 554-561.


37. Kim, HJ, Han, HJ, Jang, JA, Park, EY, An, TH, & Seo, HS, et al. (2010). Clinic Study on Herb Medication for Patients Who have a Chronic Respiratory Disease from the Cold Sequelae. J Herb Formula Sci, 18(1), 181-189.


38. Ryu, NH, Park, S, Kang, H, Sang, SB, Sung-Hoon, K, & Seung-hoon, C, et al. (2008). Effect of Samsoeum on Cytokine Regulation of Mouse T cell. J Physiol Pathol Korean Med, 22(4), 856-862.


39. Tang, WF, Tsai, HP, Chang, YH, Chang, TY, Hsieh, CF, & Lin, CY, et al. (2021). Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J, 44(3), 293-303. 10.1016/J.BJ.2021.01.005
crossref

40. Rhee, SH, Kang, MS, Choi, YK, Jun, CY, Park, CH, & Kim, DW. (2006). Comparative study of 202 herbs on interferon-gamma secretion. J Intern Korean Med, 27(2), 336-344.


41. Shin, YS, Liu, JN, Kim, JH, Nam, YH, Choi, GS, & Park, HS. (2014). The Impact of Asthma Control on Salivary Cortisol Level in Adult Asthmatics. Allergy Asthma Immunol Res, 6(5), 463-466. 10.4168/AAIR.2014.6.5.463
crossref

42. Wei, P, Li, Y, Wu, L, Wu, J, Wu, W, & Chen, S, et al. (2021). Serum cortisol levels and adrenal gland size in patients with chronic obstructive pulmonary disease. Am J Transl Res, 13(7), 8150-8157.


43. Landstra, AM, Postma, DS, Marike Boezen, H, & Van Aalderen, WMC. (2002). Role of serum cortisol levels in children with asthma. Am J Respir Crit Care Med, 165(5), 708-712. 10.1164/AJRCCM.165.5.2102115
crossref

44. Choi, SY, & Han, SW. (1990). Effects of PaiMo-San water extract on the plasma cortisol concentraction and arterial blood PCO2, PO2 in the rabbit. J Intern Korean Med, 11(1), 127-140.


45. Vink, NM, Boezen, HM, Postma, DS, & Rosmalen, JGM. (2013). Basal or stress-induced cortisol and asthma development: the TRAILS study. Eur Respir J, 41(4), 846-852. 10.1183/09031936.00021212
crossref

46. The whole country a college of Orental medicine. The joint textbook publish commission compilatioin. (2011). Herbology. 2nd ed. Yonglimsa.


47. Kang, WJ, & Seo, UK. (2008). Effects of Haengso-tang and Chwiyeon-tang on Expression of Respiratory Mucin Gene and Secretion of Airway Mucus. J Korean Med, 29(3), 76-87.


48. The Association of Korean Medicine. 2020. Recommendation for Korean Medicine Treatment for COVID-19. Available from: https://nikom.or.kr/nckm/module/practiceGuide/viewPDF.do?guide_idx=125


49. Lee, K, Jeong, S, Jeong, M, Choi, Y, Song, M, & Jang, I. (2021). Review on Herbal Medicine Treatment for Late Complications of COVID-19 Patients. J Intern Korean Med, 42(1), 53-66. 10.22246/JIKM.2021.42.1.53


50. Kim, D, Park, SH, Sung, WS, & Kim, EJ. (2022). Current Status of Korean Medicine Treatment for Post-acute COVID-19 Syndrome: A Survey of Korean Medicine Doctors. Perspect Integr Med, 1(1), 34-44. 10.56986/PIM.2022.09.006


Editorial office contact information
3F, #26-27 Gayang-dong, Gangseo-gu Seoul, 157-200 Seoul, Korea
The Society of Korean Medicine
Tel : +82-2-2658-3627   Fax : +82-2-2658-3631   E-mail : skom1953.journal@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Developed in M2PI