Introduction

Hyperhidrosis is defined as excessive perspiration in various parts of the body, usually including hands, feet, armpits, groin, and neck area due to the relatively high concentration of sweat glands\(^1\). Hyperhidrosis sufferers usually have some impairment of daily activities, social interactions and occupational activities such as securely grasping objects, sports, handshake, or playing musical instruments\(^2\).

This disorder is classified into primary or secondary hyperhidrosis. Primary hyperhidrosis has an estimated prevalence of nearly 3% and usually shows focal hyperhidrosis\(^3\). It generally starts during or before adolescence and seems to be inherited as an autosomal dominant genetic trait, and is associated with significant medical and psychosocial consequences\(^4\). Secondary hyperhidrosis involves the whole body and results from an underlying condition such as dysfunction of thyroid or pituitary glands, menopause, diabetes mellitus, or tumorous diseases\(^5\).

Hyperhidrosis can be somewhat managed by non-surgical or surgical treatments including antiperspirants, iontophoresis, cholinergic inhibitor drugs, botulinum toxin, and sympathectomy\(^6\text{-}8\). However, all current therapeutics have the limits due to low efficacy, recurrence, or side-effects such as compensatory sweating\(^9\text{-}10\). Many
hyperhidrosis sufferers in Korea instead choose traditional Korean medicines (KM). Several reports have presented KM-based diagnosis and positive clinical outcomes\(^{11,12}\). However, there is lack of study regarding the epidemiology and characterization of patients to help in the development of a KM-based therapeutic strategy.

This report aimed to produce a symptomatic characterization of hyperhidrosis patients who visited an Oriental hospital.

Methods

1. Subjects and study design

 This study was designed as a pilot study to characterize patients with hyperhidrosis. 46 patients (33 male and 13 female, median age 27.5 years, age range 14 to 63) who visited the Internal Medicine-Immune Center of Daejeon University Hospital were involved. The body parts of excessive sweating, severity of complaint and Sasang classification were recorded and analyzed.

2. Data collection and statistical analysis

 All patients were requested to indicate the severity in discomfort of life activity due to the hyperhidrosis via a numeric rating scale (NRS) having a 10-point score, the zero (0) score indicating “no inconvenience” and the nine score representing “completely impossible to conduct regular activity”. Sasang constitution was analyzed using QSCC II, and the symptom differentiation was diagnosed by a doctor based on Korean medicinal theory. Data comparisons between males and females, or among Sasang constitution and symptom differentiation were analyzed by t-test or \(\chi^2\)-test (chi-square test) using PASW Statistics 17 program.

Results

1. Body parts of hyperhidrosis

 The most complained-of body part with hyperhidrosis was the hands and feet at 50% of total patients (male 30.4% vs. female 30.8%). The second site of hyperhidrosis was the whole body at 23.9% (male 69.6% vs. female 53.8%) while the third site was head and face at 19.6% (male 30.4% vs. female 15.4%). No statistical significance between men and women was observed using \(\chi^2\)-test analysis (p > 0.05). The rate for groin and armpits were 4.3% and 2.2% respectively. The majority of patients (85.1%) were aged from 10 to 39 years old (Fig. 1).

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–19</td>
<td>12 (26.1%)</td>
</tr>
<tr>
<td>20–29</td>
<td>13 (28.3%)</td>
</tr>
<tr>
<td>30–39</td>
<td>10 (21.7%)</td>
</tr>
<tr>
<td>40–49</td>
<td>7 (15.2%)</td>
</tr>
<tr>
<td>> 50</td>
<td>4 (8.7%)</td>
</tr>
</tbody>
</table>

![Fig. 1. Body parts of hyperhidrosis and age distribution of patients](image-url)
2. Classification of patients by Sasang constitution

The Sasang constitutional classification of patients was 56.6%, 21.1%, and 21.7% for Teaeumin, Soumin, and Soyangin respectively. The male patients were 69.2%, 26.9%, and 30.8% versus 61.5%, 23.1%, and 15.4% of females respectively. The 2-test didn’t show a significant difference according to gender (p > 0.05). Among Sasang constitutional classification, the frequency rate of hyperhidrosis site was not statically significant (p > 0.05, Table 1).

3. Severity of hyperhidrosis symptoms

For all patients, the average NRS score of hyperhidrosis symptom was 5.1±1.7. There was no significant difference of NRS score among Sasang constitutional classifications at 5.1±1.5, 4.9±2.1, and 5.3±1.9 for Teaeumin, Soumin, and Soyangin respectively (p > 0.05). NRS scores were not significantly different according to gender (male 4.9 vs. female 5.6) or the hyperhidrosis sites of minimally 5.0±1.0 for head and face to maximally 5.9±2.0 for the whole body respectively (Table 1).

Discussion

In this study, all patients belonged in primary hyperhidrosis, in that they first recognized their physical symptom from adolescence (data not shown). They also reported aggravation of symptoms under the status of anxiety, tension or severe fatigue. It is well known that it is exacerbated by sympathetic overactivity\(^{13}\). One group presented that hyperhidrosis patients are closely associated with the Yang syndrome under KM-based diagnosis\(^{14}\).

The prevalence rate of hyperhidrosis was significantly higher among individuals in the prime working-age population. The median age of patients was 27.5 years, and 85.1% of patients in this study were 10 to 39 years old. In general, axillary hyperhidrosis is the most frequent complaint among the general population\(^{15}\), however, the first most common site of this study was the palmar and plantar at 50.5%. This difference could come from the study population. Even though hyperhidrosis affects most frequently the axillary region, the patients having excessive sweating at palmar and plantar locations visit the Oriental clinics due to negative influence on life activity. Primary hyperhidrosis is known to generally affect a local part of the body, but 23.9% of patients indicated the sweating symptom over the whole body.

This study investigated any difference of hyperhidrosis pattern regarding to the Sasang constitution. The Sasang classification is mainly...
determined by the functional balance between excessive and deficient organ factions, and then usually characterizes the physiopathological features including sweating pattern or susceptibility of disorders\(^{(16)}\). One study reported that *Teaeumin* more easily show perspiration compared with others from 504 patients visiting one Oriental hospital\(^{(17)}\). In addition, Koreans generally consist of 46.9%, 24.0% and 29.1% for *Teaeumin*, *Soumin*, and *Soyangin* respectively\(^{(18)}\). In this study, 56.2% of patients belonged in *Teaeumin*; this result is higher than the 46.9% of general population. Nevertheless, no statistically significant difference was observed between the general population and the subjects of this study (p = 0.366, data not shown). The *Sasang* classification didn’t affect the hyperhidrosis regions under Pearson’s chi-square analysis (p = 0.341), but *Soumin* showed the typically a higher rate of hands and feet hyperhidrosis than the other two constitutions. *Soumin* commonly have the cold trait, especially on hands and feet\(^{(19)}\).

The dermatology life quality index (DLQI) is usually used for the subjective assessment of symptomatic severity in hyperhidrosis study\(^{(20)}\). However, this study adapted the 10-point NRS score to estimate the symptomatic disturbance of regular life activity. The symptom severity of patients visiting an Oriental clinic was 5.1±1.7 on NRS. No significant difference of NRS score was observed according to the *Sasang* classification, gender or sweating body parts.

The various treatments can somewhat manage hyperhidrosis using antiperspirants, iontophoresis, cholinergic inhibitor drugs, botulinum toxin, or surgical sympathectomy, however all treatments have side-effects such as compensatory sweating\(^{(21)}\). Therefore, many patients choose KM-derived treatments, the effectiveness of which has been scientifically proven by clinical studies\(^{(22,23)}\). In aspect of high prevalence of hyperhidrosis and its unsatisfactory therapies, hyperhidrosis could be a clinical target of KM medicine.

In summary, this study has limitations such as small number of patients and incompletely objective observation after treatments. However, this study produced an important overview showing the clinical features of hyperhidrosis patients who are willing to visit Oriental clinics. This finding could be helpful to establish a strategy for KM-based treatment and therapeutic development.

Acknowledgement

This study was supported by a grant from the Oriental Medicine R&D Project, Ministry of Health & Welfare(B100045), Republic of Korea.

References