Effects of Samul-tang-gamibang against Focal Cerebral Ischemic Damage by Middle Cerebral Artery Occlusion of Rats

Chang-Hoon Seo, Young-Kyun Kim, Jung-Nam Kwon
Dept. of Circulatory Internal Medicine, College of Oriental Medicine, Dong-Eui University

Objectives: This research was performed to investigate effect of Samul-tang-gamibang against focal cerebral ischemic damage after middle cerebral artery occlusion (MCAO).

Methods: This research was used rats which were against focal cerebral ischemic damage by MCAO. It was used Zea Longa’s theory and Belayev’s methods to give rise to focal cerebral ischemic damage by MCAO. After 7 days later, we drew out the brain and then had frozen and dyeing it and we had taken a picture to measure of the damaged area in each brain section. We determined the Neurological Index and tested the Foot-fault test and Rotated test to appraise the fall of motion ability result from cerebral ischemic damage.

Results: The results of the experiment are as follows.
1. Samul-tang-gamibang reduced infarct size of sample group compared to control group at 7 day after MCAO.
2. Samul-tang-gamibang reduced infarct volume of sample group compared to control group at 7 day after MCAO.
3. Samul-tang-gamibang reduced foot-fault index of sample group compared to control group at 5, 7 day after MCAO.

Conclusions: Samul-tang-gamibang has protective effects against ischemic brain damage and had significant reduced infarct size and infarct volume of Rt-MCAO.

Key Words: Samul-tang-gamibang, ischemic damage, middle cerebral artery occlusion (MCAO)
병 초기의 뇌 조직 손상을 최대한 줄이는 것이 가장 효과적인 대처 방법이다.

뇌외상에서는 종종 전조증에 대한 예방과 급성 기의 치료 후유증에 대한 치료를 모두 중시하였고 의식 장애 운동 장애 인지 장애에 대한 많은 치료법이 연구되었다. 특히 운동 장애에 대한 치료와 재활은 뇌외상 환자의 주된 치료 목표이다.

"四物湯은 흔히"《太平惠民和尙遺方》에 최초로 기록된 이후 "補血 行血 調血하는 기본적인 처방으로 많이 활용되었으며 특히 "四物湯에 白芍, 桃/> 紅花를 짝당하여 左側 不通의 處方으로 활용하였다.

조 동은 "四物湯의 중대에 동백 패쇄 이용한 뇌虚血조절왔을 약물이 뇌의 기능 회복에 미치는 영향에 대한 보고는 있었으나 최소한 우리의 의례에 의한 좌 우선심수의 기능회복에 관한 연구는 접점된 바 없었다. 이에 저자는 중대에 동백 패쇄로 뇌혈관 손상 을 일으킨 "四物湯에 패쇄량을 증가하여 뇌혈 상면막과 뇌혈관 부위체의 이용을 증가하여 유익하고 있는 결과를 얻었으며 보고하는 바이다.

제료 및 방법

1. 실험동물

실험동물은 대형 실험동물용에서 구입한 체중 180g 전후의 Sprague-Dawley 계 백서를 사용하였다. 물과 병금 사료제에 따라 주식과 대량의 자유음 게 먹도록 하였으며, 사육실 내의 온도는 21-24℃, 습도는 40-60%로 유지하였고 낭과 발의 주기는 각각 12시간씩 하였다. 실험실 환경에 2주간 적응시킨 후 사용하였으며 실험할 때의 원体重은 250~300g 이었다.

2. 약물의 조제 및 투여

실험에 사용한 "四物湯加味方은 "東醫實錄"에 수록된 것임을 기준으로 하였으며, 동의학교 부속병원 병원 약제실에서 구입하여 사용하였다. 치방법은 1일 복용은 다음과 같다(Table 1). 합약제는 5,000mg의 round flask 에 10절 분량 약제 360g을 3,280mℓ의 증류수에 넣어 관란 냉장에서도 2시간 동안 가열 용액으로 1시간 후 용액을 rotary evaporator에서 감압 농축한 후 동결조를 시켜 추출물 84.5g을 얻었다. 약물의 두어는 실험동물의 체중 100g 당 "四物湯加味方 140.89mg을 1mℓ의 물에 녹여 중대동백 패쇄 1일째에는 1시간과 4시간 후에 경구투여 하였으며, 이후 7일째 좌측의 4회 경구투여 하였다.

3. 뇌혈관 손상 유발

중대동백 패쇄에 의한 뇌虚血 손상 유발은 Zea Longa 또는 혈관내동물실험을 재배하였다. 수술의 모든 과정은 그 방법을 따랐으며 보다 광범위하고 일정한 뇌혈관 유발은 위해 Belayev 등이 사용한 poly-L-lysine 고정법과 병원체를 방법을 시행하였다.

수술과정은 약물재료와 같다. 마취는 체중 250~300g 사이의 건강한 Sprague-Dawley 계 워구를 옹례에 침소와 산소의 혼합가스(침소 70%, 산소 30%)에 포함된 5% isoflurane 으로 유지하고 1회 약 1.5% isoflurane 으로 계속 유지하였다. 마취 후 수술용 현미경 (Carl Zeiss, Zeiss, Germany) 하에서 먼저 경서부의 근육을 정리하여 혈관을 노출시킨 후 외정 동맥과 침동맥을 잘 정리하였다. 후두동맥의 상방 상동맥을 electric coagulator (Ellman, Dento-Surg 90 FFP, USA)를 사용하여 절단하였다. 외정동맥의 원위 부분은 결합하고 수술용 (5-0 silk suture)로 고정후를 두 개 만들어 놓은 후, 대뇌동맥과 침동맥은 수술실 (3-0 suture과 artery clamp)을 이용하여 주행하였다.

<table>
<thead>
<tr>
<th>Table 1. Contents of Samui-tang-gambang.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herb</td>
</tr>
<tr>
<td>Acacia</td>
</tr>
<tr>
<td>門冬</td>
</tr>
<tr>
<td>槟榔</td>
</tr>
<tr>
<td>甘草</td>
</tr>
<tr>
<td>楠</td>
</tr>
<tr>
<td>紫花</td>
</tr>
<tr>
<td>白芍</td>
</tr>
<tr>
<td>紫蘇</td>
</tr>
<tr>
<td>麥芽</td>
</tr>
<tr>
<td>Total amount</td>
</tr>
</tbody>
</table>
을 사용하여 열명을 완전 차단하였다. 미세수술기기(Microdissecting Spring Scissor)로 월각동맥의 원 jane
을 약간 절개 후 poly-L-lysine 용액 (SIGMA Diagnostics, P8920, 0.1% w/v in water)으로 코팅한 봉
함시 (4-0 nylon suture, Ethilon, Brazil)를 18-20nm 정도 삽입하였다. 삽입 후 내경동맥과 충동동맥을 다시
관류시키고 월각동맥의 원 가부를 절단하였다. 정전부의 적부를 봉합하고 마취에서 깨어난 후 자
유롭게 육안이 가능하였다.

실험군은 원측 종대뇌동맥을 폐쇄한 대조군(Lt-MCAO, n=6), 원측 종대뇌 동맥 폐쇄후 四物湯加味
方 투여군(Lt-MCAO+Sample, n=6) 오른쪽 종대뇌 동맥을 폐쇄한 대조군(Rt-MCAO, n=6), 오른쪽 종대뇌
뇌 동맥 폐쇄 후 四物湯加味方 투여군(Rt-
MCAO+Sample, n=6) 항노 내 부하시 삽입과정을 제
외한 수술을 시행한 원쪽 sham군(Lt-Sham, n=6) 및
오른쪽 sham군(Rt-Sham, n=6) 총 6개 군으로 나누어
시행하였다.

4.
비행

뇌혈

혈

손상의

행동생리학적

평가

뇌혈에 따른 운동기능 이상을 평가하기 위해 다
양한 항목의 운동기능 검사 지표들을 이용하여 四物
湯加味方의 뇌혈후 유의 기간의 운동 기능 이상
에 대한 조사로 neurological index를 설정하였으
며, 이의 foot-fault test 및 rotator test를 시행하였다.
Neurological index의 평가항목으로는 torso twisting, visual limb stretching, resistance to lateral push, resistance to back push, dorsal limb reflex, proprioceptive dorsal limb reflex, chin tactile reflex의 7
가지를 조사하여 총 14점으로 합산하였다(Table 2).
상기의 운동기능평가방법은 약속하면 다음과 같다.
1) Neurological Score

1) Torso twisting

실험동물의 비대칭 행동을 측정하는 test로 고리를
잡고 plexiglas box의 바닥에서 1 inch 되게 든다 30초
의 실험기간동안 10° 이상의 각도로 우측 또는 좌측
39. Ideal treatment of side difference of foot-fault

1. Foot-fault grid.

2) Foot-fault test

(4) Resistance to lateral push

(5) Dorsal limb reflex

(6) Proprioceptive dorsal limb reflex

(7) Chin reflex
6. Statistical Analysis

사물양감지능의 효과를 파악하기 위하여 각 실험군은 대조군과 비교하는 Student’s t-test를 사용하였으며, \(p < 0.05 \) 수준에서 유의성을 검정하였다.

결 과

1. 뇌혈류 손상 면적 관찰

원반 또는 오른쪽 중대뇌 동맥 폐쇄 후 뇌혈류 손상 양상은 양측 대조군에서는 허혈성 뇌손상이 interaural 12 mm에서 2 mm질 절까지 모두에서 나타났으며, 가장 뇌손상이 큰 절은 10 mm~8 mm 절이었다. 암모늄 투여군 모두에서 허혈성 뇌손상이 나타나는 양상은 대조군과 동일한 경향을 보였으며\(Fig. 1 \).

원반 중대뇌동맥 폐쇄 7일째 대조군\((Lt-MCAO) \)에서는 허혈성 뇌손상 면적이 interaural 12 mm에서 2 mm 절까지 각각 2 mm 절이었으며, 12.80 ± 1.99 mm2, 23.94 ± 2.81 mm2, 28.20 ± 1.74 mm2, 13.78 ± 3.82 mm2, 6.21 ± 1.84 mm2, 4.26 ± 1.69 mm2를 나타내었다. 이에 비하여 원반 중대뇌 동맥 폐쇄 사물양감지능 투여군\((Lt-MCAO+Sample) \)은 대조군과 비교하여 허혈성 뇌손상

\[
\text{Foot-fault index} = \frac{\text{(Contralateral foot fault no. - Ipsilateral foot fault no.)}}{\text{total forelims walking no.}} \times 100
\]
Table 3. Infarct Areas in Coronal Sections of Rat Brain 7 Days after MCAO over Groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>12 *</th>
<th>10 *</th>
<th>8 *</th>
<th>6 *</th>
<th>4 *</th>
<th>2 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lt-MCAO</td>
<td>12.80±1.99</td>
<td>23.94±2.81</td>
<td>28.20±1.74</td>
<td>13.78±3.82</td>
<td>6.21±1.84</td>
<td>4.26±1.69</td>
</tr>
<tr>
<td>Lt-MCAO+Sample</td>
<td>16.31±0.14</td>
<td>24.24±0.68</td>
<td>21.78±0.40</td>
<td>11.38±0.48</td>
<td>3.71±0.53</td>
<td>1.07±1.34</td>
</tr>
<tr>
<td>Rt-MCAO</td>
<td>19.06±2.13</td>
<td>27.79±0.87</td>
<td>23.71±2.91</td>
<td>9.73±0.77</td>
<td>6.51±1.45</td>
<td>2.61±0.73</td>
</tr>
<tr>
<td>Rt-MCAO+Sample</td>
<td>6.42±0.52**</td>
<td>24.82±1.64</td>
<td>21.99±2.29</td>
<td>8.31±0.37</td>
<td>5.26±1.42</td>
<td>2.06±1.03</td>
</tr>
</tbody>
</table>

The number are shown as mean ± SE
* means distance from interaural line.
** indicates that its statistical significance is p<0.01, compared to the value for Rt-MCAO group.
Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administrated group after left MCAO (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated group after right MCAO (n=6).

Fig. 2. Infarct Areas at Brain Section 2 to 12 mm from Interaural Line 7 days after Rt-MCAO. Statistical significance compared to the value for Rt-MCAO group(*: p<0.01). Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated group after right MCAO (n=6). Data are presented as the mean ± SE

Table 4. Infarct Volumes 7 Days after MCAO over Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Infarct Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lt-MCAO</td>
<td>178.38±26.62</td>
</tr>
<tr>
<td>Lt-MCAO+Sample</td>
<td>156.98±29.61</td>
</tr>
<tr>
<td>Rt-MCAO</td>
<td>178.80±4.83</td>
</tr>
<tr>
<td>Rt-MCAO+Sample</td>
<td>137.70±13.29*</td>
</tr>
</tbody>
</table>

The number are shown as mean ± SE
* indicates that its statistical significance is p<0.05 compared to the value for Rt-MCAO group.
Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administrated group after left MCAO (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated group after right MCAO (n=6).

3. Neurological Score
원측 또는 오른쪽 뇌혈관 손상후 근육강도에 관련한 운동기능의 회복에 미치는 안전한 사례(四物湯加味方) 효과를 보면 양측 모두 대조군에 비해 유의한 차이가 나타나지 않아 사례의 7일간의 경구투여가 근육강도의 회복 정도에 미치는 효과가 거의 없었다 (Table 5, Fig. 4, 5).

4. Foot-fault test
원측 중대뇌동맥을 폐쇄한 후 foot-fault을 검사한 결과 대조군(Lt-MCAO)과 무의구(Lt-MCAO+Sample)의 foot-fault index는 1일부터 7일까지 유의하게 차이가 없었다(Table 6, Fig. 6).
반면 오른쪽 중대뇌동맥을 폐쇄한 후 foot-fault을
Table 6. Time-Dependency of the Foot-fault Test over Groups.

<table>
<thead>
<tr>
<th>Days</th>
<th>Group</th>
<th>Left MCAO</th>
<th>Left MCAO+Sample</th>
<th>Lt-Sham</th>
<th>Rt-MCAO</th>
<th>Rt-MCAO+Sample</th>
<th>Rt-Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lt-MCAO</td>
<td>13.35 ± 4.94</td>
<td>17.80 ± 1.99</td>
<td>-0.62 ± 0.62</td>
<td>41.65 ± 9.26</td>
<td>19.97 ± 4.52</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>3</td>
<td>Lt-MCAO</td>
<td>21.67 ± 10.61</td>
<td>14.07 ± 6.73</td>
<td>-0.86 ± 0.86</td>
<td>21.66 ± 7.61</td>
<td>9.65 ± 2.86</td>
<td>1.06 ± 0.56</td>
</tr>
<tr>
<td>5</td>
<td>Rt-MCAO</td>
<td>24.24 ± 8.60</td>
<td>19.97 ± 4.92</td>
<td>0.00 ± 0.00</td>
<td>13.36 ± 3.33</td>
<td>3.63 ± 1.87*</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>7</td>
<td>Lt-Sham</td>
<td>22.40 ± 7.99</td>
<td>21.40 ± 2.40</td>
<td>0.00 ± 0.00</td>
<td>13.28 ± 7.29</td>
<td>5.80 ± 2.27*</td>
<td>0.51 ± 0.51</td>
</tr>
</tbody>
</table>

The number are shown as mean ± SE

* indicates that its statistical significance is p<0.05, compared to the value for Rt-MCAO group.

Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administered group after left MCAO (n=6); Lt-Sham, left sham operated group (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administered group after right MCAO (n=6); Rt-Sham, right sham operated group (n=6).

Fig. 4. Mean ± SE Neurological Scores During 7 days after Lt-MCAO. Higher Scores Indicate Greater Impairment. Lt-MCAO, Left MCAO Group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang Administered Group after Left MCAO (n=6); Lt-Sham, Left Sham Operated Group (n=6).

Fig. 5. Mean ± SE Neurological Scores During 7 days after Rt-MCAO. Higher Scores Indicate Greater Impairment. Rt-MCAO, Right MCAO Group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang Administered Group after Right MCAO (n=6); Rt-Sham, Right Sham Operated Group (n=6).

5. Rotarod test

원족 또는 오른쪽 뇌혈관 손상 후 운동가능의 희박에 미치는 한약물인 四物湯加味方 효과를 보면 양쪽 모두 대조군에 비해 유의한 차이가 나타나지 않아 四物湯加味方의 7일간의 경구투여가 운동가능 희박정도에 미치는 효과가 거의 없었다(Table 7, Fig. 8, 9).

6. 체중의 변화

중대뇌종바행체에 따른 낮혀있 손상 후 모든 중대뇌종바행체 원측 및 sham 군에 있어 체중의 감소가 관찰되었다. Sham 군의 경우 약 10g 정도의 체중감소

Table 6. Time-Dependency of the Neurological Score over Groups.

<table>
<thead>
<tr>
<th>Days</th>
<th>Group</th>
<th>Left MCAO</th>
<th>Left MCAO+Sample</th>
<th>Lt-Sham</th>
<th>Rt-MCAO</th>
<th>Rt-MCAO+Sample</th>
<th>Rt-Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lt-MCAO</td>
<td>13.50 ± 0.50</td>
<td>12.67 ± 0.67</td>
<td>2.25 ± 0.85</td>
<td>13.25 ± 0.48</td>
<td>13.67 ± 0.3</td>
<td>2.33 ± 1.45</td>
</tr>
<tr>
<td>3</td>
<td>Lt-MCAO</td>
<td>13.50 ± 0.50</td>
<td>12.67 ± 0.88</td>
<td>1.75 ± 1.18</td>
<td>12.25 ± 0.48</td>
<td>12.67 ± 0.67</td>
<td>2.00 ± 1.15</td>
</tr>
<tr>
<td>5</td>
<td>Rt-MCAO</td>
<td>13.75 ± 0.25</td>
<td>14.00 ± 0.00</td>
<td>1.50 ± 0.96</td>
<td>13.25 ± 0.48</td>
<td>13.00 ± 0.00</td>
<td>1.33 ± 1.33</td>
</tr>
<tr>
<td>7</td>
<td>Lt-Sham</td>
<td>13.50 ± 0.50</td>
<td>12.67 ± 0.33</td>
<td>1.00 ± 1.00</td>
<td>12.75 ± 0.48</td>
<td>13.33 ± 0.67</td>
<td>0.00 ± 0.00</td>
</tr>
</tbody>
</table>

The number are shown as mean ± SE

Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administered group after left MCAO (n=6); Lt-Sham, left sham operated group (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administered group after right MCAO (n=6); Rt-Sham, right sham operated group (n=6).
Fig. 6. Mean ± SE Foot-Fault Test During 7 days after Lt-MCAO. Higher Scores Indicate Greater Impairment. Lt-MCAO, Left MCAO Group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang Administered Group after left MCAO (n=6); Lt-Sham, Left Sham Operated Group (n=6).

Fig. 7. Mean ± SE Foot-Fault Test During 7 days after Rt-MCAO. Higher Scores Indicate Greater Impairment. * Indicates that its Statistical Significance is \(p < 0.05 \), Compared to the Value for Rt-MCAO Group. Rt-MCAO, Right MCAO Group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang Administered Group after Right MCAO (n=6); Rt-Sham, Right Sham Operated Group (n=6).

Table 7. Time-Dependency of the Rotarod Test over Groups

<table>
<thead>
<tr>
<th>Days</th>
<th>Group Left</th>
<th>Lt-MCAO</th>
<th>Lt-MCAO+Sample</th>
<th>Lt-Sham</th>
<th>Rt-MCAO</th>
<th>Rt-MCAO+Sample</th>
<th>Rt-Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lt-MCAO</td>
<td>8.75 ± 3.52</td>
<td>43.00 ± 23.39</td>
<td>75.25 ± 9.53</td>
<td>18.75 ± 10.88</td>
<td>23.67 ± 12.55</td>
<td>72.67 ± 12.00</td>
</tr>
<tr>
<td>3</td>
<td>Lt-MCAO</td>
<td>25.75 ± 14.47</td>
<td>72.67 ± 32.63</td>
<td>116.00 ± 12.93</td>
<td>50.25 ± 21.08</td>
<td>39.67 ± 15.30</td>
<td>136.33 ± 25.01</td>
</tr>
<tr>
<td>5</td>
<td>Lt-MCAO</td>
<td>78.75 ± 31.35</td>
<td>50.33 ± 10.27</td>
<td>134.75 ± 20.92</td>
<td>69.75 ± 32.07</td>
<td>42.33 ± 13.78</td>
<td>136.67 ± 25.41</td>
</tr>
<tr>
<td>7</td>
<td>Lt-MCAO</td>
<td>99.50 ± 38.47</td>
<td>54.67 ± 6.39</td>
<td>149.50 ± 32.69</td>
<td>29.75 ± 9.17</td>
<td>61.00 ± 24.42</td>
<td>109.00 ± 23.43</td>
</tr>
</tbody>
</table>

*The number are shown as mean ± SE.
Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administrated group after left MCAO (n=6); Lt-Sham, left sham operated group (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated group after right MCAO (n=6); Rt-Sham, right sham operated group (n=6).*
Table 8. Change of the Time-Dependency of Body weight Over Groups

<table>
<thead>
<tr>
<th>Days</th>
<th>Group</th>
<th>Left MCAO</th>
<th>Left MCAO+Sample</th>
<th>Lt-Sham</th>
<th>Rt-MCAO</th>
<th>Rt-MCAO+Sample</th>
<th>Rt-Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>243.3 ±21.4</td>
<td>231.5 ±13.8</td>
<td>267.8 ±2.4</td>
<td>198.3 ±3.3</td>
<td>207.0 ±5.5</td>
<td>235.3 ±2.3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>213.3 ±16.1</td>
<td>210.2 ±24.9</td>
<td>271.5 ±1.7</td>
<td>187.6 ±11.5</td>
<td>195.7 ±6.2</td>
<td>247.5 ±4.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>199.3 ±15.6</td>
<td>201.7 ±32.2</td>
<td>270.3 ±6.0</td>
<td>187.8 ±18.1</td>
<td>204.3 ±6.0</td>
<td>253.5 ±3.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>194.3 ±18.8</td>
<td>194.8 ±39.6</td>
<td>275.5 ±12.3</td>
<td>192.3 ±24.1</td>
<td>226.0 ±4.1</td>
<td>270.8 ±8.3</td>
</tr>
</tbody>
</table>

The number are shown as mean ± SE.

* and ** indicates that their statistical significances are p<0.05 and p<0.01, compared to the value for Control Group, respectively.

Lt-MCAO, left MCAO group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administrated group after left MCAO (n=6); Lt-Sham, left sham operated group (n=6); Rt-MCAO, right MCAO group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated group after right MCAO (n=6); Rt-Sham, right sham operated group (n=6).

Fig. 10. Mean ± SE Change of the Time-Dependency of Body Weight after Lt-MCAO.

Lt-MCAO, Left MCAO Group (n=6); Lt-MCAO+Sample, Samul-tang-gamibang administrated Group after Left MCAO (n=6); Lt-Sham, Left Sham Operated Group (n=6).

지 대조군(Rt-MCAO)에 비해 체중의 빠른 회복을 보 였으나 유의한 차이가 나타나지 않았다(Table 8, Fig. 10, 11).

고 노

시험에서는 감각이 쓸려져 의식은 잃거나, 한쪽 수축을 못 쓰거나, 말을 못하는 등의 증상을 보였으며, 이러한 증상이 나타나는 대표적인 질환인 뇌 좌우신맥의 증상에 비해 비해 심각한 결과가 발생하여 뇌혈관질환의 발생빈도 또한 증가하는 추세 이다.5,6

뇌증상은 혈관 관련으로 인한 피혈성 뇌증과 혈관 내막의 해열성 뇌증으로서 정상 뇌혈관을 유지하고 있는 추세이다. 뇌증상은 혈관

Fig. 11. Mean ± SE Change of the Time-Dependency of Body Weight after Rt-MCAO.

Rt-MCAO, Right MCAO Group (n=6); Rt-MCAO+Sample, Samul-tang-gamibang administrated Group after Right MCAO (n=6); Rt-Sham, Right Sham Operated Group (n=6). Data are Presented as the Mean ± SEM.
대뇌피질, 신경과학자들이 연구한 대뇌피질의 구조, 염증 반응, 혈관질환, 신경세포 손상, 세포사멸, 그리고 신경세포의 재생과 같은 주요 주제를 다룹니다. 그 중에서도 대뇌피질의 구조와 형태학적인 변화를 통해 신경세포의 손상이 발생하는 경로와 원인에 대해 자세히 설명하고 있습니다.

이 연구는 최근의 연구결과를 바탕으로, 신경세포의 손상과 세포사멸의 원인을 설명하고, 이를 통해 대뇌피질의 원인과 역할을 이해하는 데 도움을 줄 수 있습니다. 특히, 세포사멸의 과정을 통해 대뇌피질의 구조와 기능을 이해하는 데 중요하며, 이는 신경과학자들이 새로운 연구방향을 제시하는 데 도움이 될 것입니다.
적은 관찰된 결과, 四物湯加味方 투여군이 대조군에 비해 유의성(p<0.05) 있게 감소하였다.

원칙 중대뇌동맥을 폐쇄한 후 대조군과 四物湯加味方 투여군의 foot-fault index는 1일부터 7일까지 유의하게 차이가 없었다. 그러나 오른쪽 중대뇌동맥을 폐쇄한 후 foot-fault은 검사한 결과 사등가기미방 투여군이 대조군보다 전반적으로 1일부터 7일까지 foot-fault index가 낮았으며, 5일과 7일째에서 四物湯加味方 투여군이 대조군보다 foot-fault index가 유의성(p<0.05) 있게 감소하였다. 그러나 Neurological index, rotord test, Body weight는 유의성이 없었다.

이상의 결과로 보아 四物湯加味方이 쵌마의 양측 중대뇌 동맥 폐쇄에 의한 뇌혈행 장애의 회복에서 우측이 좌측보다 유의성이 있음을 알 수 있었고, 우측 반신불수의 회복보다 좌측 반신불수의 회복에도 일정한 정도의 효과가 있다고 생각된다.

결 론

四物湯加味方이 쵌마의 좌우 중대뇌 동맥 폐쇄에 의한 뇌혈행 장애의 회복에 미치는 효과를 관찰하여 다음과의 결론을 얻었다.

1. 오른쪽 중대뇌 동맥 폐쇄 7일째 대조군에 비해 四物湯加味方 투여군은 유의성 있게 손상 면적
이 감소하였다.
2. 오른쪽 중대뇌 동맥 폐쇄 7일째 대조군에 비해 四物湯加味方 투여군은 뇌혈행 부위의 체적
이 감소하였고, 유의성 있게 손상면적이 감소하였다.
3. 오른쪽 중대뇌 동맥 폐쇄 7일째 대조군에 비해 四物湯加味方 투여군이 5일과 7일째 foot-fault
index가 유의성 있게 감소하였다.

이상의 결과에서 四物湯加味方은 우측 중대뇌 동
맥의 폐쇄시 가능 화복에 효과적으로 작용하였다.

참고문헌

1. 김영식. 임상증후화 서울 시한장 1997;303-315.
2. 해리손내과학 편찬위원회. 내과학. 서울: 정단.
 1997:2409-2430.
4. 陳師文. 太平惠民和順局方 北京: 人民衛生出版社.
6. 唐長慶. 禪藏論. 廢困論. 大定論이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
7. 唐長慶. 禪藏論. 廢困論. 大定論이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
8. 唐長慶. 禪藏論. 廢困論. 大定論이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
9. 唐長慶. 禪藏論. 廢困論. 大定論이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
10. 唐長慶. 禪藏論. 廢困론. 大定론이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
11. 唐長慶. 禪藏論. 廢困론. 大定론이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
12. 唐長慶. 禪藏論. 廢困론. 大定론이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
13. 唐長慶. 禪藏論. 廢困론. 大定론이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
14. 唐長慶. 禪藏論. 廢困론. 大定론이 증
 란 동맥 경화로 유발된 뇌혈행 장애 미치는 영향 대한
lesions as revealed by the elevated body swing test.
Brain Res. 1995;676:231-234.
19. DeRyck M, Reempt J, Borgers M, Wauquier A,
Janssen AJ. Photochemical stroke model: Flunarizine
prevents sensory motor deficits after infarcts in rats.
20. one E, Hohansson BB, Hagberg H. Sensory motor
function and neuropathology five to six weeks after
hypoxia-ischemia in seven-day-old rats. pediatric res.
21. Hernandez TD, Schallert T. Seizure and recovery
22. Germano IM, Barkowski HM, Cassel ME, Pitts LH.
The therapeutic value of nimodipine in experimental
focal cerebral ischemia. J. Neurosurgery. 1987;67:81-
87.
23. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG and
Jenkins IW. The rotated test: An evaluation on its
effectiveness in assessing motor deficits following
196.
24. 広木 哲也, 安芸明浩, 田中 良一, 水原 隆司, 前田 哲也, 岩崎 智貴,
ヒト脳組織を用いた神経管良性腫瘍の検査: 二重層型
25. 松原 茉里, 雨宮 宏, 今村 聡, 坂本 美里, 川村 博史, 坂本 一樹,
長谷川 恵, 佐藤 明, 中川 浩之, 小林 進, 小林 美代子, 西村 信彦,
あったら神経が活性化するか否か: ホスファラテイ
26. 博報 秀行, 本多 清, 福地 俊之, 水原 隆司, 前田 哲也, 岩崎 智貴,
ヒト脳組織を用いた神経管良性腫瘍の検査: 二重層型