Introduction

The neurodegenerative condition of Parkinson’s disease is characterized by rigidity and akinesia. A major pathological hallmark of Parkinson’s disease is the degeneration of nigrostriatal dopaminergic neurons\(^1\). It was reported that MPTP is a neurotoxin that can induce symptoms similar to those observed in Parkinson’s disease in mice\(^2,3\). The toxicity of MPTP is known to be mediated by the toxic metabolite MPP\(^+\). Numerous studies have shown that MPP\(^+\) induces apoptosis in several cell types\(^4,5\).

Apoptosis is thought to play an important role in the neuronal loss in many neurological disorders including Parkinson’s disease. It has well been documented that the process of apoptosis is regulated by the expressions of several proteins. Some of them are the Bcl-2 family (Bcl-2, protect against cell death, while Bax, expressed during apoptosis and promotes cell death\(^6\) and the caspases, one of the key executioners of apoptosis\(^7\)).

Paeoniae Radix (PR), the root of Paeonia lactiflora PALLAS, is a crude medicinal herb. It has been used for blood nourishing, circulation activating,
menstruation regulating, stopping sweats, decreasing blood pressure, alleviating pain and numbness, relieving spasm and cramp, and treating for liver disease in a lot of traditional prescriptions in Korea, China and Japan11. Several polysaccharides isolated from PR was found to have immunological activities12-13.

However, no report has been made on the effect of PR extract against MPP+-induced apoptosis in SK-N-MC human neuroblastoma cells. We investigated it and report the results of the study.

Materials and methods

1. Drugs

Paeoniae Radix(PR) was purchased from Kyung-Dong marketplace(Seoul, Korea). To obtain the aqueous extract of PR, 200g of PR was added to distilled water, and extraction was performed by heating at 80°C, concentrated with a rotary evaporator, and lyophilized. The resulting powder, weighing 30g, was dissolved in saline.

2. Reagents

H\textsubscript{2}O\textsubscript{2} was purchased from Junsei Chemical Co., Ltd.(Tokyo, Japan). The 3-((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid(MTT) assay kit was purchased from Boehringer Mannheim GmbH(Mannheim, Germany). The DNA fragmentation assay kit was obtained from TaKaRa(Shiga, Japan).

3. Cell culture

Cells of the human neuroblastoma SK-N-MC were purchased from the Korean Cell Line Bank(KCLB; Seoul, Korea). Cells were cultured in Dulbecco’s Modified Eagle’s Medium(DMEM; Gibco BRL, Grand Island, NY, USA) supplemented with 10% heat-inactivated fetal bovine serum(FBS; Gibco BRL) at 37°C in 5% CO\textsubscript{2}, 95% O\textsubscript{2} in a humidified cell incubator.

4. MTT cytotoxicity assay

Cell viability was determined using the MTT assay kit according to the manufacturer’s protocol. To determine the cytotoxicity of *Paeoniae Radix*, cells were treated with *Paeoniae Radix* at concentrations of 0.1mg/ml, 1mg/ml, and 10mg/ml for 24h. For analysis of the protective effect of PR against cell death induced by MPP+, cells were pre-treated with PR at concentrations of 1mg/ml and 10mg/ml for 1h before MPP+ 100\mu g/ml was applied for another 24h. Cultures of the control group were left untreated. The MTT labeling reagent 10\mu l was added to each well, and the plates were incubated for 4h. Solubilization solution 100\mu l was added to each well, and the cells were incubated for another 12h. The absorbance was then measured with a microtiter plate reader(Bio-Tek, Winooski, VT, USA) at a test wavelength of 595nm and a reference wavelength of 690nm. Optical density(O.D.) was calculated as the difference between the absorbance at the reference wavelength and that at the test wavelength. Relative viability was calculated as(O.D. of drug-treated sample/control O.D.).

5. TUNEL assay

For *in situ* detection of apoptotic cells, TUNEL assay was performed using ApoTag® peroxidase in situ apoptosis detection kit. SK-N-MC cells were cultured on 4-chamber slides(Nalge Nunc International, Naperville, IL, USA) at a density of 2 x 104cells/chamber. After treatment with PR and MPP+, the cells were washed with phosphate buffered saline(PBS) and fixed by incubating in 4% paraformaldehyde(PFA) for 10min at 4°C. The fixed cells were then incubated with digoxigenin-conjugated dUTP in a terminal deoxynucleotidyl transferase (TdT)-catalyzed reaction for 60min at 37°C in a humidified atmosphere and were immersed in stop/wash buffer for 10min at room temperature. The cells were then incubated with anti-
digoxigenin antibody conjugated with peroxidase for 30 min. DNA fragments were stained using 3,3-diaminobenzidine (DAB; Sigma Chemical Co., St. Louis, MO, USA) as the substrate for the peroxidase.

6. DAPI staining

For DAPI staining, cells were cultured on 4-chamber slides. After treatment with PR and MPP⁺, cells were fixed by incubation in 4% paraformaldehyde (PFA) for 30 min. Following washing in PBS, the cells were incubated in 1 µg/ml DAPI solution (Sigma Chemical Co.) for 30 min in the dark. The cells were then observed under a fluorescence microscope (Zeiss, Oberkochen, Germany).

7. Flow cytometric analysis

For flow cytometric analysis, after treatment with PR and MPP⁺, cells were collected and fixed by incubation with 75% ethanol in PBS at -20°C for 1 h. Afterwards, the cells were incubated with 100 µg/ml RNase and 20 µg/ml propidium iodide in PBS for 30 min at 37°C and were analyzed using FACSscan (Becton Dickinson, San Jose, CA, USA).

8. DNA fragmentation

For detection of apoptotic DNA cleavage, a DNA fragmentation assay was performed using an ApopLadder EXTM DNA fragmentation assay kit. Cells were treated with PR and MPP⁺ and then lysed with 100 µl of lysis buffer. The lysate was incubated with 10 µl of 10% sodium dodecyl sulfate (SDS) solution containing 10 µl of Enzyme A at 56°C for 1 h followed by treatment with 10 µl of Enzyme B at 37°C for 1 h. After adding 70 µl of precipitant and resuspending the resultant pellet in Tris-EDTA (TE) buffer, genomic DNA was visualized by electrophoresis in a 2% agarose gel containing ethidium bromide.

9. RNA isolation and RT-PCR

Total RNA was isolated from SK-N-MC cells using RNAzol™B (TEL-TEST, Friendswood, TX, USA) as per the manufacturer’s instruction. RNA 2 µg and random hexamers (Promega) 2 µl were added together, and the mixture was heated at 65°C for 10 min. 1 µl AMV reverse transcriptase (Promega), 5 µl of 10 mM dNTP (Promega), 1 µl of RNasin (Promega) and 5 µl of 10 x AMV RT buffer (Promega) were then added to the
mixture, and the final volume was brought up to 50 \mu l with dimethyl pyrocarbonate (DEPC)-treated water. The reaction mixture was then incubated at 42°C for 1h.

PCR amplification was performed in a reaction volume of 40 \mu l containing 1 \mu l of the appropriate cDNA, 1 \mu l of each set of primers at a concentration of 10pM, 4 \mu l of 10 x RT buffer, 1 \mu l of 2.5mM dNTP, and 2 units of Taq DNA polymerase (TaKaRa). For human Bax, the primer sequences were 5'-GTGCACCAA-GGTGCCGGAAC-3' (a 20-mer sense oligonucleotide starting at position 375) and 5'-TCAGCCCATC-TTCTTCCAGA-3' (a 20-mer anti-sense oligonucleotide starting at position 560). For human Bcl-2, the primer sequences were 5'-CGACGACTTCTC-CCGCCGCTACCGC-3' (a 25-mer sense oligonucleotide starting at position 334) and 5'-CCGCATGCT-GGGGCCGTACAGTTCC-3' (a 25-mer anti-sense oligonucleotide starting at position 628). For cyclophilin, the internal control used in the study, the primer sequences were 5'-ACCCCACTCGTGTTCTTCGAC-3' (a 20-mer sense oligonucleotide starting at position 52) and 5'-CATTTCGATGGACAGATG-3' (a 20-mer anti-sense oligonucleotide starting at position 332). The expected sizes of the PCR products were 205bp (for Bax), 318bp (for Bcl-2), and 299bp (for cyclophilin).

10. **Western blot analysis**

Cells were treated with PR and MPP⁺, and collected. Cells were lysed in a lysis buffer containing 50mM Tris-HCl (pH 7.5), 150mM NaCl, 0.5% deoxycholic acid, 1% Nonidet P40, 0.1% SDS, 1mM PMSF, 100g/ml leupeptin. Protein content was measured using a Bio-Rad colorimetric protein assay kit (Bio-Rad, Hercules, CA, USA). Protein 50g was separated on SDS-polyacrylamide gels and transferred onto a nitrocellulose membrane (Schleicher & Schuell GmbH, Dassel, Germany). Mouse caspase-3 antibody (Santa Cruz Biotech, Santa Cruz, CA, USA) was used as a primary antibody. Horseradish peroxidase-conjugated anti-mouse antibody for caspase-3 (Amersham Pharmacia Biotech GmbH, Freiburg, Germany) was used as a secondary antibody. Band detection was performed using the enhanced chemilumine-

Fig. 2. Morphological observations of cells treated with MPP⁺ and Paeoniae Radix (PR).

Black arrows indicate where condensed and margined chromatin have been labeled.

(A) Control group;
(B) 100\mu g/ml MPP⁺-treated group;
(C) 10ng/ml PR-pre-treated and 100\mu g/ml MPP⁺-treated group. All scale bars represent 100\mu m.
11. Statistical analysis

Results are expressed as mean ± standard error mean (S.E.M.). Data was analyzed by one-way analysis of variance (ANOVA) followed by Duncan’s post-hoc test. Differences were considered statistically significant at p<0.05.

EXPERIMENTAL RESULTS

1. Effects of Paeoniae Radix against MPP⁺-induced cytotoxicity

The viabilities of cells incubated with *Paeoniae Radix* (PR) at concentrations of 0.1mg/ml, 1mg/ml, and 10mg/ml for 24h were 79.82±11.33%, 108.09±2.61%, and 123.57±2.26% of the control value, respectively. A trend of increasing viability with increasing PR concentration was observed. The viability of the cells exposed with 100μg/ml MPP⁺ for 24h was 43.74±0.95% of the control value, while viability of the cells pre-treated with PR at 1mg/ml and 10mg/ml for 1h before exposure to MPP⁺ was increased in statistically significant fashion to 57.05±2.82% and 82.91±0.87%, respectively. Results of the MTT assay showed a significant decrease in the viability of MPP⁺-treated cells, while PR was shown to exert a protective effect against MPP⁺-induced cytotoxicity (Fig. 1).

To further confirm the induction of apoptosis by MPP⁺ and the preventive effect of PR in SK-N-MC cells, cells treated with MPP⁺ and PR were analyzed using TUNEL assay. TUNEL-positive cells were stained dark brown under the light microscope, and nuclear condensations were observed in cultures treated with 100μg/ml MPP⁺, while the appearance of cells pre-treated with 10mg/ml PR prior to MPP⁺ exposure was similar to that of the control cells (Fig. 2, upper).

In addition, cells were observed under fluorescence microscope following treatment with DAPI, which specifically stains the nuclei. The assay revealed the occurrence of nuclear condensation, DNA fragmentation and perinuclear apoptotic bodies upon 100μg/ml of MPP⁺ treatment, while the appearance of cells pre-treated with 10mg/ml PR prior to MPP⁺ exposure was similar to that of the control cells (Fig. 2, lower).

![Fig. 3. Flow cytometric analysis. The fraction of cells in the sub-G1 phase was increased in the MPP⁺-treated cultures but reduced in the PR-pre-treated cultures, to a level comparable to that seen in the control group.](image-url)
3. Effects of Paeoniae Radix on Cell cycle distribution changes

Flow cytometric analysis was also used to analyze the protective effect of PR against MPP+-induced cell death. The fraction of cells in the sub-G1 phase increased from 35.30% (value from the control group) to 61.13% following treatment with 10mg/ml of MPP+ for 24h, while the figure was decreased to 42.51% with PR-pre-treatment at a concentration of 10mg/ml for 1h. It indicated that the PR-pre-treatment induced a lesser accumulation of cells in the sub-G1 phase, which has been considered to be the marker of cell death (Fig. 3).

4. Effects of Paeoniae Radix on DNA fragmentation

In order to ascertain the protective effect of PR against MPP+-induced cell death, DNA fragmentation, reflecting the endonuclease activity characteristic of apoptosis, was analyzed. Treatment with MPP+ at a concentration of 100μg/ml for 24h resulted in the formation of definite fragments which could be seen via electrophoresis as a characteristic ladder pattern; pre-treatment with 10mg/ml PR for 1h resulted in a decreased intensity of MPP+-induced DNA laddering (Fig. 4).

RT-PCR analysis of the mRNA levels of Bax and Bcl-2 were performed in order to provide an estimate of the relative levels of expressions of these genes. In the present study, the mRNA levels of Bax and Bcl-2 in the control cells set at 1.00. The level of Bax mRNA following treatment with 100μg/ml MPP+ markedly increased to 2.05±0.34, but decreased to 1.34±0.30 in cells pre-treated with PR at a concentration of 10mg/ml. The level of Bcl-2 mRNA following treatment with 100μg/ml MPP+ markedly decreased to 0.39±0.06, but increased to 0.83±0.12 in cells pre-treated with PR at a concentration of 10mg/ml (Fig. 5).

In cells of 100μg/ml MPP+-treated groups, increased level of caspase-3 expression (32 kDa) was detected. In the pre-treatment with PR, the level of expression of caspase-3 was decreased (Fig. 6).

Discussion

Parkinson’s disease (PD) is one of the common neurodegenerative disorders. Its neurodegenerative condition is characterized by rigidity and akinesia. A major pathological hallmark of PD is the degeneration of nigrostriatal dopaminergic neurons. It was reported that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that can induce symptoms similar to those observed in PD in mice, and MPTP induces selective loss of dopaminergic neurons in the substantia nigra of mice. The toxicity of MPTP is known to be mediated by the toxic metabolite 1-methyl-4-phenylpyridine (MPP+).

Increasing evidence from epidemiological studies documented that environmental factors are implicated in the selective dopaminergic cell loss in substantia
nigra. Epidemiological risk factor analyses of PD identified several neurotoxins. Of these, MPP+ is converted from MPTP by the monoamine oxidase B in the inner mitochondrial membrane. At the level of the central nervous system, this process takes place mainly in the glial cells. MPP+ is thus selectively taken up by dopaminergic neurons via the dopamine transporter of the membrane. Various studies reported that MPP+ induces apoptosis in several cell types such as SK-N-MC, PC12 cells, cerebellar granule cells, and SHSY-5Y neuroblastoma cells.

Paeoniae Radix (PR), the root of Paeonia lactoflora PallAS, a traditional medical herb of Korea, China and Japan, has been frequently used for blood nourishing, circulation activating, pain alleviating, menstruation regulating, and treating for liver disease and cancer. There are some experimental reports. Subcutaneous injection of PR has demonstrated marked sedative and suppressant effects on the central nervous system in mice. PR is a potential anti-aging and anticarcinogenesis agent as it was reported to inhibit oxidative DNA cleavage induced by various oxidative DNA damage chemicals.

The extract from PR (PRE) is a complex mixture and its active components are unknown whether the inhibitory effects of PRE are attributable to a single component or more than one component in the drug is uncertain. PRE improves blood flow through its endothelium-dependent vasodilatory action on aorta and its inhibitory effect on thrombosis and platelet aggregation. It was presented that Gallic acid is one of the compounds isolated from PRE and Gallic and induces...

Fig. 5. RT-PCR analysis of the mRNA levels of Bax and Bcl-2. As the internal control, cyclophilin mRNA was also reverse-transcribed and amplified. Results are presented as mean ± standard error mean (S.E.M.). (A) Control group; (B) 100 μg/ml MPP+-treated group; (C) 10mg/ml PR-pre-treated and 100 μg/ml MPP+-treated group. * : represents p <0.05 compared to the control group. # : represents p <0.05 compared to the MPP+-treated group.

Fig. 6. Western blot analysis of the protein levels of caspase-3. (A) Control group; (B) 100 μg/ml MPP+-treated group; (C) 10mg/ml PR-pre-treated and 100 μg/ml MPP+-treated group. Actin, used as the internal control, was detected at the position corresponding to a molecular weight of 46 kDa.
apoptosis in several cancer cell lines25 and the induction of apoptosis in several lung cancer cell involved caspase activation26-27. It was informed that benzonic acid was isolated from PR. Different benzonic acid derivatives were reported to induce apoptosis in cancer cells28,29).

Animal models and clinical studies have showed that some herbal remedies including PR are effective in inhibiting the recurrence of malignancies and in cancer therapy30,31. It was revealed that PR can inhibit liver fibrosis and damage induced by CCl\textsubscript{4} and D-galactosamine in rat; thus PR has a protective role on hepatocyte 32,33).

Recently, it has been reported that PR has a neuroprotective effect as well as antimicrobial, anticoagulant, cognition-enhancing, immunoregulating, hypoglycaemic, and neuromuscular blocking effects34,35. It was reported that PR is useful for the relieve of stress, pain, and a tonic state36,37). Lee et al.38 reported that PR had inhibitory effect on the growth of human hepatoma cell lines. In addition, Park et al.37 showed that Paeonia japonica MIYABE improves the immune response of the helper T cells, B cells, and macrophages. Several studies have revealed that PR has a neuroprotective effect against on neuronal cell damage38-41 and has also been used in the treatment of stroke therapy42,43).

In the present study, the protective effect of aqueous extract of PR on apoptosis induced by MPP+ in SK-N-MC human neuroblastoma cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling(TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction(RT-PCR), and Western blot analysis.

In this study, MTT assay confirmed that MPP+ exerts cytotoxicity as a dose-dependent manner, and that administration of PR has a protective effect against the cytotoxic action induced by MPP+. From flow cytometric analysis of DNA contents, an increase in the fraction of cells in the sub-G\textsubscript{1} phase was observed in the MPP+-treated group. This increased sub-G\textsubscript{1}-phase fraction was reduced by pre-treatment with PR to a level comparable to that seen in the control group.

It is known that apoptosis involves the activation of endonucleases and that this activation results in the cleavage of genomic DNA into well-defined fragments, which appear as a characteristic ladder pattern upon agarose gel electrophoresis44). To provide evidence supporting the involvement of apoptosis in MPP+-induced cytotoxicity and the protective effect of PR against MPP+-induced apoptosis, DNA fragmentation assay was performed. The MPP+-treated group showed the distinctive ladder pattern characteristic of apoptosis, similar to the results observed by González-Polo et al.18 in cultured rat cerebellar granule cells and those presented by Chun et al.45 in their study involving substantia nigra-derived dopaminergic cell line. On the other hand, the cells pre-treated with PR showed noticeable decrease in the intensity of MPP+-induced DNA laddering.

Cells undergoing apoptotic death exhibit several morphological characteristics such as chromatin condensation, nuclear fragmentation, and apoptotic cell body formation46). Apoptotic bodies, one of the stringent morphological criteria of apoptosis, were characteristically present in MPP+-treated cells stained with DAPI, while pre-treatment with PR decreased such appearance significantly, in this study. DNA strand breaks are known to occur during apoptosis, and it is known that nicks in the DNA molecules can be detected via TUNEL assay47). In this study, TUNEL-positive cells were detected in the MPP+-treated group, while the occurrence of such cells was decreased in the cultures pre-treated with PR.
MPP⁺ has been reported to induce neuronal apoptosis¹⁷-¹⁹, and understanding the molecular events triggering apoptosis is an important step toward the development of effective treatment strategies for such neurological disorders. Bax is a member of the Bcl-2 family that acts as a promotor of cell death⁴⁸. Administration of MTPT into the mice induced increasing of the expression of Bax in the substantia nigra⁴⁹. It was reported that MPP⁺ induces Bax expression in dopaminergic neuronal cell line MN9D cells⁵⁰.

It has well been documented that the process of apoptosis is regulated by the expressions of several proteins. The Bcl-2 family can be classified into two functionally distinct groups: anti-apoptotic proteins and pro-apoptotic proteins. Bcl-2, an anti-apoptotic protein, is known to regulate the apoptotic pathways and to protect against cell death, while Bax, a pro-apoptotic protein of the family, is expressed abundantly and selectively during apoptosis and promotes cell death⁹. The caspases, a class of cysteine proteases, are considered to play a central role in the apoptotic process and to trigger a cascade of proteolytic cleavage events in mammalian cells. Of particular interest is caspase-3, the most widely studied member of the caspase family and one of the key executioners of apoptosis, being responsible either partially or wholly for the proteolytic cleavage of various proteins⁸⁰.

The present results demonstrated that Bax expression was increased by MPP⁺-treatment in the SK-N-MC cells, and cells pre-treated with PR showed much dampening in this increment. When Bcl-2 is overexpressed, it heterodimerizes with Bax, and cell death is repressed. Presumably, the ratio of Bax to Bcl-2 serves to determine the susceptibility of cells to apoptosis¹¹. In the present study, PR pre-treatment resulted in a decrease in Bax expression.

Caspases, a family of cysteine proteases, are an integral part of the apoptotic pathway⁸⁰. Recent reports indicate that caspases play a role in neuronal cell death during development as well as after neuronal injury⁵². Bilsland et al.⁵¹ also reported that MPP⁺-induced apoptosis involves the caspase-3 pathway. In the present study, the number of the activated caspase-3 expression was increased by MPP⁺-treatment in the SK-N-MC cells and cells pre-treated with PR showed much dampening in this increment.

The present results showed that Paeoniae Radix(PR) exerts a significant neuroprotective effect against MPP⁺-induced apoptosis in the SK-N-MC neuronal cells.

Conclusion

To find out the protective effect of Paeoniae Radix(PR) extract against MPP⁺-induced apoptosis in SK-N-MC human neuroblastoma cells, we carried out several experiments. The experimental results were as follows:

1. The appearance of cells pre-treated with PR 10mg/ml prior to MPP⁺ exposure was similar to those of the control cells by TUNEL staining and DAPI staining.
2. The fraction of cells in the sub-G1 phase increased from 35.30%(value from the control group) to 61.13% following MPP⁺ exposure, while the figure was decreased to 42.51% in cells pre-treated with PR 10mg/ml prior to MPP⁺ exposure.
3. The pre-treatment with PR 10mg/ml prior to MPP⁺ exposure resulted in a decreased intensity of MPP⁺-induced DNA laddering.
4. The pre-treatment with PR 10mg/ml prior to MPP⁺ exposure resulted in the decrease of the increased level of Bax mRNA expression and in the increase of the decreased level of Bcl-2 mRNA expression.
5. The pre-treatment with PR 10mg/ml prior to MPP⁺ exposure decreased the level of expression of caspase-3.
Based on the present study, we arrive at the conclusion that it is possible for *Paeoniae Radix* (PR) to be a useful drug in the treatment of Parkinson’s disease.

References

17. Sheng GQ, Zhang JR, Pu XP, Ma J, Li CL. Protective effect of verbascoside on 1-methyl-4-

37. Park HR, Ham YH, Yee ST, Paik SG, Jo SK. Characteristics of B cell proliferation by polysaccharide fraction of *Paeonia japonica* MIYABE. Immune Network 2001;1:126-134.

41. Tsuda T, Sugaya A, Ohguchi H, Kishida N, Sugaya E. Protective effects of peony root extract and its components on neuron damage in the hippocampus induced by the cobalt focus epilepsy model. Exp Neurol 1997;146:518-525.

49. Hassouna L, Wickert H, Zimmermann M, Gillardon F. Increase in Bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) treatment of...

