Effect of Myrrha Water Extract on Psoriasis-Like Skin Inflammation

Article information

J Korean Med. 2025;46(2):84-92
Publication date (electronic) : 2025 June 1
doi : https://doi.org/10.13048/jkm.25020
1Department of Pharmacology, School of Korean Medicine, Wonkwang University
2Research center of Traditional Korean medicine, Wonkwang University
Correspondence to: Il-Joo Jo, Research center of Traditional Korean medicine, Wonkwang University., Tel: +82-63-850-6842, Email: joiljoo@naver.com
Received 2025 April 11; Revised 2025 April 30; Accepted 2025 May 22.

Abstract

Objectives

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocyte hyperproliferation and increased inflammatory signaling. Commiphora myrrha (myrrh), a traditional medicinal resin used in East Asian herbal medicine, has been applied to treat skin-related ailments due to its anti-inflammatory and healing properties. This study investigated the potential anti-psoriatic effects of aqueous myrrh extract in an in vitro psoriatic keratinocyte model using HaCaT cells.

Methods

HaCaT keratinocytes were stimulated with a cytokine mixture (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α; collectively called M5) to mimic psoriatic conditions. Cell viability after aqueous myrrh extract treatment was evaluated using the MTT assay. The expression of keratin 6 (KRT6), a marker of hyperproliferation, was measured by quantitative real-time PCR. mRNA levels of inflammatory cytokines (IL-6, TNF-α, IL-17, IL-22) and chemokines (MCP-1, CCL2, CCL5, CXCL1, CXCL8) were also analyzed.

Results

Aqueous myrrh extract showed cytotoxicity at 1 mg/mL, whereas lower concentrations (0.05–0.5 mg/mL) were non-toxic and used in further experiments. It significantly reduced M5-induced KRT6 expression, indicating reduced hyperproliferation. It also suppressed IL-6, IL-17, and IL-22 expression, though TNF-α reduction was not significant. Among chemokines, CCL2, CCL5, CXCL1, and CXCL8 were significantly downregulated, while MCP-1 was unaffected.

Conclusions

Aqueous myrrh extract alleviates keratinocyte hyperproliferation and inflammatory mediator expression in a psoriatic model. Its traditional use and demonstrated efficacy suggest myrrh as a promising candidate for anti-psoriatic therapy development.

Fig. 1

Cytotoxic effects of Myrrha water extract in HaCaT cells.

Fig. 2

Effects of Myrrha water extract on mRNA expression of KRT6 in HaCaT cells.

Fig. 3

Effects of Myrrha water extract on mRNA expression of IL-6, TNF-α, IL-17 and IL-22 in HaCaT cells.

Fig. 4

Effects of Myrrha water extract on mRNA expression of MCP-1, CCL2, CCL5, CXCL1, and CXCL8 in HaCaT cells.

Primer Sequence of SYBR Green Real-Time PCR

References

1. Lowes M. A., Bowcock A. M., Krueger J. G.. 2007;Pathogenesis and therapy of psoriasis. Nature 445(7130):866–873. https://doi.org/10.1038/nature05663.
2. Di Cesare A., Di Meglio P., Nestle F. O.. 2009;The IL-23/Th17 axis in the immunopathogenesis of psoriasis. The Journal of Investigative Dermatology 129(6):1339–1350. https://doi.org/10.1038/jid.2009.59.
3. Boehncke W. H., Schön M. P.. 2015;Psoriasis. The Lancet 386(9997):983–994. https://doi.org/10.1016/S0140-6736(14)61909-7.
4. Herbology Textbook Compilation Committee. 2020. Herbal Medicine 4th Edth ed. Seoul: Youngrimsa. p. 442–443.
5. Shen T., Li G. H., Wang X. N., Lou H. X.. 2012;The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 142(2):319–330. https://doi.org/10.1016/j.jep.2012.05.025.
6. Su S., Wang T., Duan J. A., Zhou W., Hua Y. Q., Tang Y. P.. 2012;Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. Journal of Ethnopharmacology 134(2):251–258. https://doi.org/10.1016/j.jep.2010.12.003.
7. Dolara P., Corte B., Ghelardini C., Pugliese A. M., Cerbai E., Menichetti S., Lo Nostro A.. 2000;Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Medica 66(4):356–358. https://doi.org/10.1055/s-2000-8532.
8. Alahmari A.. 2023;Aqueous Myrrh Extract Relieves Oxidative Stress-Dependent Nephrotoxicity Induced by Ethanol in Male Rats. Parkistan Journal of Zoology 56(3):1089–1099. https://dx.doi.org/10.17582/journal.pjz/20230207120254.
9. Shin M.. 2010. Clinical traditional herbalogy Seoul: Yeong. Lim Publishing. p. 748–749.
10. Sohn Y. H., Kim E. H., Lee B. W.. 2006;A study of external treatment of the Wai-Ke-Zheng-Zong. Journal of Korean medical classics 19(1):110–127.
11. Kwon H. Y., Kim J. H.. 2009;An overview of Korean Medicine for burn injury. Korean Journal of Acupuncture 26(4):152–172.
12. Batiha G. E., Wasef L., Teibo J. O., Shaheen H. M., Zakariya A. M., Akinfe O. A., Teibo T. K. A., Al-Kuraishy H. M., Al-Garbee A. I., Alexiou A., Papadakis M.. 2023;Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-Schmiedeberg’s archives of pharmacology 396(3):405–420. https://doi.org/10.1007/s00210-022-02325-0.
13. Suliman R. S., Alghamdi S. S., Ali R., Aljatli D., Aljammaz N. A., Huwaizi S., Suliman R., Kahtani K. M., Albadrani G. M., Barhoumi T., Altolayyan A., Rahman I.. 2022;The Role of Myrrh Metabolites in Cancer, Inflammation, and Wound Healing: Prospects for a Multi-Targeted Drug Therapy. Pharmaceuticals (Basel, Switzerland) 15(8):944. https://doi.org/10.3390/ph15080944.
14. Jung Y. H., Roh Y. W., Chong M.. 2022;Anti-inflammatory Effects of Myrrh Ethanol Extract on Particulate Matter-induced Skin Injury. The Journal of Korean Medicine 43(3):1–15. https://doi.org/10.13048/jkm.22026.
15. Fatani A. J., Alrojayee F. S., Parmar M. Y., Abuohashish H. M., Ahmed M. M., Al-Rejaie S. S.. 2016;Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Experimental and Therapeutic Medicine 12(2):730–738. https://doi.org/10.3892/etm.2016.3398.
16. Rahmani A. H., Anwar S., Raut R., Almatroudi A., Babiker A. Y., Khan A. A., Alsahli M. A., Almatroodi S. A.. 2022;Therapeutic potential of myrrh, a natural resin, in health management through modulation of oxidative stress, inflammation, and advanced glycation end products formation using in vitro and in silico analysis. Applied Sciences 12(18):9175. https://doi.org/10.3390/app12189175.
17. Johnson-Huang L. M., McNutt N. S., Krueger J. G., Lowes M. A.. 2012;Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. Journal of Clinical Investigation 122(2):478–486.

Article information Continued

Fig. 1

Cytotoxic effects of Myrrha water extract in HaCaT cells.

Fig. 2

Effects of Myrrha water extract on mRNA expression of KRT6 in HaCaT cells.

Fig. 3

Effects of Myrrha water extract on mRNA expression of IL-6, TNF-α, IL-17 and IL-22 in HaCaT cells.

Fig. 4

Effects of Myrrha water extract on mRNA expression of MCP-1, CCL2, CCL5, CXCL1, and CXCL8 in HaCaT cells.

Table 1

Primer Sequence of SYBR Green Real-Time PCR

Name Direction Sequence
HPRT Forward 5′-TGA CAC TGG CAA AAC AAT GCA–3′
Reverse 5′-GGT CCT TTT CAC CAG CAA GCT-3′

KRT6 Forward 5′-GGG TTT CAG TGC CAA CTC AG–3′
Reverse 5′-CCA GGC CAT ACA GAC TGC GG-3′

TNF-α Forward 5′-CCT CTC TCT AAT CAG CCC TCT G-3′
Reverse 5′-GAG GAC CTG GGA GTA GAT GAG-3′

IL-6 Forward 5′-ACT CAC CTC TTC AGA ACG AAT TG-3′
Reverse 5′-CCA TCT TTG GAA GGT TCA GGT TG-3′

IL-17 Forward 5′-TCT GTG ATC TGG GAG GCA AAG-3′
Reverse 5′-CGT TCC CAT CAG CGT TGA T-3′

IL-22 Forward 5’-CGT TCC CAT CAG CGT TGA T-3′ ′
Reverse 5′-GGA TAT GCA GGT CAT CAC CTT CA-3′

CCL5 Forward 5′-CTA CTG CCC TCT GCG CTC C-3′
Reverse 5′-TGG TGT CCG AGG AAT ATG GG-3′

CCL2 Forward 5′-CAC CAG CAG CAA GTG TCC C-3′
Reverse 5′-CCA TGG AAT CCT GAA CCC AC-3′

CXCL1 Forward 5′-CCT CAA TCC TGC ATC CC-3′
Reverse 5′-AGT TGG ATT TGT CAC TGT-3′

CXCL8 Forward 5′-CCC CTA AGA GCA GTA ACA GTT CCT-3′
Reverse 5′-GGT GAA GAT AAG CCA GCC AAT C-3′