References
1. Roy D., Dutta M.. 2022;A systematic review and research perspective on recommender systems. Journal of Big Data 9:59. 10.1186/s40537-022-00592-5.
2. Jamali M., Ester M.. 2010. A matrix factorization technique with trust propagation for recommendation in social networks. In : Proceedings of the 4th ACM conference on Recommender systems. p. 135–142.
10.1145/1864708.1864736.
3. Zhang F., Yuan J. N., Lian D., Xie X., Ma W. Y.. 2016. Collaborative knowledge base embedding for recommender systems. In : Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 353–362.
10.1145/2939672.2939673.
4. Sun Y., Yuan J. N., Xie X., McDonald K., Zhang R.. 2017;Collaborative Intent Prediction with Real-Time Contextual Data. ACM Transactions on Information Systems 35(4):1–33.
10.1145/3041659.
5. Guo Q., Zhuang F., Qin C., Zhu H., Xie X., Xiong H., et al. 2022;A Survey on Knowledge Graph-Based Recommender Systems. IEEE Transactions on Knowledge and Data Engineering 34(8):3549–3568.
10.1109/TKDE.2020.3028705.
6. Wang H., Zhang F., Wang J., Zhao M., Li W., Xie X., et al. 2018. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. In : Proceedings of the 27th ACM International Conference on Information and Knowledge Management. p. 417–426.
10.1145/3269206.3271739.
7. Kim S. K., Lee M. K., Jang H., Lee J. J., Lee S., Jang Y., et al. 2024;TM-MC 2: an enhanced chemical database of medicinal materials in Northeast Asian traditional medicine. BMC Complementary Medicine and Therapies 24:40. 10.1186/s12906-023-04331-y.
8. Korea Institute of Oriental Medicine. 2013. Ontology-based Traditional Korean Medicine Knowledge Framework (Final report) Daejeon: Korea Institute of Oriental Medicine.
9. Szklarczyk D., Santos A., Mering C., Jensen L. J., Bork P., Kuhn M.. 2016;STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Research 44:D380–384.
10.1093/nar/gkv1277.
10. Piñero J., Saüch J., Sanz F., Furlong L. I.. 2021;The DisGeNET cytoscape app: exploring and visualizing Disease genomics data. Comput Struct Biotechnol J 19:2960–7.
10.1016/j.csbj.2021.05.015.
11. Wang H., Zhao M., Xie X., Li W., Guo M.. 2019;Knowledge Graph Convolutional Networks for Recommender Systems. The World Wide Web Conference :3307–3313.
10.1145/3308558.3313417.
12. Li C., Cao Y., Zhu Y., Cheng D., Li C., Morimoto Y.. 2024;Ripple Knowledge Graph Convolutional Networks for Recommendation Systems. Machine Intelligence Research 21:481–494.
10.1007/s11633-023-1440-x.
13. Seo J. S., Kim S. K., Oh Y. T., Kim A. N., Jang H. C.. 2014;Web based System for Supporting Medical Treatment in Korean Medicine based on Korean Medicine Ontology. Journal of Physiology & Pathology in Korean Medicine 28(1):113–121.
14. Kim S. K., Lee S., Kim A.. 2024;A Prescription Support System using Synonyms of Indications in Prescriptions. The Journal of Herbal Formula Science 32(4):457–464.
10.14374/HFS.2024.32.4.457.
15. Zhou W., Yang K., Zeng J., Lai X., Wang X., Ji C., et al. 2021;FordNet: Recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule. Pharmacological Research :173.
doi.org/10.1016/j.phrs.2021.105752.
16. Qian Y., Wang X., Cai L., Han J., Huang Z., Lou Y., et al. 2024;Model informed precision medicine of Chinese herbal medicines formulas–A multi-scale mechanistic intelligent model. Journal of Pharmaceutical Analysis 14(4):100914.
doi.org/10.1016/j.jpha.2023.12.004.
17. Fang S. S., Dong L., Liu L., Guo J. C., Zhao L. H., Zhang J. Y., et al. 2020;HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic acids research 49(1):D1197–D1206.
10.1093/nar/gkaa1063.
18. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., et al. 2020;Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 34th Conference on Neural Information Processing Systems 793:9459–9474.
10.5555/3495724.3496517.