Acute toxicity and genotoxicity assessment of Ligigeopoong-san

Article information

J Korean Med. 2024;45(3):40-53
Publication date (electronic) : 2024 September 1
doi : https://doi.org/10.13048/jkm.24036
Korean Medicine Non-clinical Study Center, National Development Institute of Korean Medicine
Correspondence to: Jong-Hyun Nho, Korean Medicine Non-clinical Study Center(GLP), National Development Institute of Korean Medicine, Wondogwandeok-gil 27, 59319, Jangheung-eup, Jangheung-gun, Jeollanam-do, Republic of Korea, Tel: +82-61-860-2873, E-mail: nhopaper@gmail.com
Received 2024 June 11; Revised 2024 August 5; Accepted 2024 August 19.

Abstract

Objectives

This study aimed to investigate whether Ligigeopoong-san induces acute toxicity and genotoxicity

Methods

Ligigeopoong-san contains the rhizome of Cnidium officinale MAKINO, an herb with potential teratogenicity. Teratogenicity is closely associated with genotoxicity. We analyzed whether Ligigeopoong-san induces acute toxicity and genotoxicity using various experimental models in accordance with Korean non-clinical test standards for pharmaceuticals and OECD test guidelines.

Results

When Ligigeopoong-san was administered as a single dose to male and female rats, no toxic reactions, including organ damage, were observed at doses up to 2,500 mg/kg. In the bacterial reverse mutation test, no DNA mutations were detected at concentrations up to 5,000 μg/plate. In cell models, Ligigeopoong-san did not induce structural or numerical chromosomal aberrations at concentrations up to 2,000 μg/mL. Additionally, in animal studies, it did not cause bone marrow toxicity or form micronuclei in erythrocytes at doses up to 2,000 mg/kg.

Conclusions

The experiments using various models demonstrated that Ligigeopoong-san did not induce acute toxicity or genotoxicity.

Fig. 1

Structural aberration in vitro mammalian chromosomal aberration test

Image captured using E-200(Nikon, Tokyo, Japan) microscope. (A)~(G) 600X magnification, (H) 400X magnification. (A) Distilled water, (B)~(E) Ligigeopoong-san(short-term exposure, −S9), (F) chromosome exchange(Benzo[a]pyrene 20 ug/mL, short-term exposure, +S9), (G) chromatid break(Mitomycin 0.1 ug/mL, short-term exposure, −S9), (H) chromatid exchange(Mitomycin 0.1 ug/mL, continuous exposure, −S9).

Information of Ligigeopoon-san

Results of the acute toxicity assessment

Results of the bacterial reverse mutation test without metabolic activation system

Results of the bacterial reverse mutation test with metabolic activation system

Results of the in vitro mammalian chromosomal aberration test

Results of the mammalian erythrocyte micronucleus test

References

1. Park M. J., Jin S. R., Oh J. H., Song W. S., Lee H. S., Woo J. H., Hwang K. H., Bae G. H., Yun Y. C.. 2022;Peripheral facial palsy due to cerebellar artery infarction is improved by Korean medical treatment: A case report. The Journal of Internal Korean Medicine 43(2):122–129. https://doi.org/10.22246/jikm.2022.43.2.122.
2. Sim S. Y.. 2015;Clinical research of Korean medical treatment for the peripheral facial paralysis. The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology 28(4):62–73. https://doi.org/10.6114/jkood.2015.28.4.062.
3. Lee D. H., Kwon B. I., Yu J. S., Park S. K., Kim J. H.. 2022;Neural mechanisms underlying peripheral facial nerve palsy: A protocol for systematic review and meta-analysis of neuroimaging studies. Medicine 101(48):e32110. https://doi.org/10.1097/MD.0000000000032110.
4. Wang C. C., Li L., Tang L. Y., Leung P. C.. 2012;Safety evaluation of commonly used Chinese herbal medicines during pregnancy in mice. Human Reproduction 27(8):2448–2456. https://doi.org/10.1093/humrep/des180.
5. Wang H., Bao Q., Yi H., Xia Q.. The evaluation of embryotoxicity of Ligusticum chuanxiong on mice and embryonic stem cells. Journal of Ethnopharmacology 15(239):111895. https://doi.org/10.1016/j.jep.2019.111895.
6. Choi J. S., Han J. Y., Koren G., Cho Y. K.. 2021;Evaluation of fetal and neonatal outcomes after ingestion of Cnidium root (Cnidium officinale Makino) during pregnancy. Early Human Development 161:105456. https://doi.org/10.1016/j.earlhumdev.2021.105456.
7. Mohamed H. R. H., El-Atawy R. H., Ghoneim A. M., El-Ghor A. A.. 2020;Induction of fetal abnormalities and genotoxicity by molybdenum nanoparticles in pregnant female mice and fetuses. Environmental Science and Pollution Research 27(19):23950–23962. https://doi.org/10.1007/s11356-020-08137-0.
8. Argüelles-Velázquez N., Alvarez-González I., Madrigal-Bujaidar E., Chamorro-Cevallos G.. 2013;Amelioration of cadmium-produced teratogenicity and genotoxicity in mice given arthrospira maxima (Spirulina) treatment. Evidence-Based Complementary and Alternative Medicine 2013:604535. https://doi.org/10.1155/2013/604535.
9. Phillips D. H., Arlt V. M.. 2009;Genotoxicity: damage to DNA and its consequences. EXS 99:87–110. https://doi.org/10.1007/978-3-7643-8336-7_4.
10. De Assis K. R., Ladeira M. S., Bueno R. C., Dos Santos B. F., Dalben I., Salvadori D. M.. 2009;Genotoxicity of cigarette smoking in maternal and newborn lymphocytes. Mutation Research 679(1–2):72–78. https://doi.org/0.1016/j.mrgentox.2009.02.006.
11. Erhirhie E. O., Ihekwereme C. P., Ilodigwe E. E.. 2018;Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology 11(1):5–12. https://doi.org/10.2478/intox-2018-0001.
12. Nair A. B., Jacob S.. 2016;A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy 7(2):27–31. https://doi.org/10.4103/0976-0105.177703.
13. Hayashi M.. 2022;Opinion: regulatory genotoxicity: past, present and future. Genes and Environment 44(1):13. https://doi.org/10.1186/s41021-022-00242-5.
14. Levy D. D., Zeiger E., Escobar P. A., Hakura A., van der Leede B. M., Kato M., Moore M. M., Sugiyama K. I.. 2019;Recommended criteria for the evaluation of bacterial mutagenicity data (Ames test). Genetic Toxicology and Environmental Mutagenesis 848:403074. https://doi.org/10.1016/j.mrgentox.2019.07.004.
15. Sims P., Grover P. L., Swaisland A., Pal K., Hewer A.. 1974;Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature 252(5481):326–328. https://doi.org/10.1038/252326a0.
16. Theisen A., Shaffer L. G.. 2010;Disorders caused by chromosome abnormalities. The Application of Clinical Genetic 3:159–174. https://doi.org/10.2147/TACG.S8884.
17. Kang S. H., Kwon J. Y., Lee J. K., Seo Y. R.. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. Journal of Cancer Prevention 18(4):277–288. https://doi.org/10.15430/jcp.2013.18.4.277.

Article information Continued

Fig. 1

Structural aberration in vitro mammalian chromosomal aberration test

Image captured using E-200(Nikon, Tokyo, Japan) microscope. (A)~(G) 600X magnification, (H) 400X magnification. (A) Distilled water, (B)~(E) Ligigeopoong-san(short-term exposure, −S9), (F) chromosome exchange(Benzo[a]pyrene 20 ug/mL, short-term exposure, +S9), (G) chromatid break(Mitomycin 0.1 ug/mL, short-term exposure, −S9), (H) chromatid exchange(Mitomycin 0.1 ug/mL, continuous exposure, −S9).

Table 1

Information of Ligigeopoon-san

Number Name Weights (g) Ratio (%) Origin Ash (%) SO2 (ppm) Aflatoxin Quantification analysis Heavy metal (ppm) Pesticide residues Analyzation Company*
Substance Ratio (%)
1 Root of Glycyrrhiza uralensis Fisch. ex Dc. 3 6.25 China 5.5 7.5 Suitable Glycyrrhizic acid Liquiritigenin 3.37
0.83
Suitable Suitable 1
2 Root of Ostericum koreanum Maximowicz 3 6.25 Korea 7.0 9.9 - - - Suitable Suitable 1
3 Immature fruit of Citrus aurantium Linné 3 6.25 China 3.3 16.2 - - - Suitable Suitable 1
4 Root of Platycodon grandiflorum A. De Candolle 3 6.25 Korea 5.5 8.0 - - - Suitable Suitable 2
5 Rhizome of Arisaema amurense Maximowicz 3 6.25 China 4.4 - - - - Suitable Suitable 3
6 Root of Aralia continentalis Kitagawa 3 6.25 Korea 4.5 6.0 - Kaurenoic acid + Continentalic acid 2.00 Suitable Suitable 1
7 Tuber of Pinellia ternata Breitenbach 3 6.25 China 2.5 14.0 Suitable - - Suitable Suitable 4
8 Root of Saposhnikovia divaricata (Turcz.) Schischkin 3 6.25 China 2.5 9.0 - - - Suitable Suitable 1
9 Root of Paeonia lactiflora Pallas 3 6.25 Korea 2.8 3.0 - Albiflorin + Paeoniflorin 3.80 Suitable Suitable 1
10 Root of Angelica dahurica Bentham et Hooker 3 6.25 Korea 6.9 3.9 - Oxypeucedanin + Imperatorin + Isoimperatorin - Suitable Suitable 1
11 Root of Lindera strichnifolia Fernandez-Villar 3 6.25 China 0.6 11.4 - - - Suitable Suitable 1
12 Pericarp of Citrus unshiu Markovich 3 6.25 China 2.2 7.8 - Hesperidin 14.3 Suitable Suitable 1
13 Rhizome of Cnidium officinale MAKINO 3 6.25 Korea 4.4 2.0 - - - Suitable Suitable 2
14 Rhizome of Gastrodia elata Blume 3 6.25 China 2.9 7.7 - Gastrodin + Gastrodigenin - Suitable Suitable 1
15 Immature pericarp of Citrus unshiu Markovich 3 6.25 China 3.3 16.2 - - - Suitable Suitable 1
16 Floral axis of Schizonepeta tenuifolia Briquet 3 6.25 Korea 6.0 19.2 - - - Suitable Suitable 1
48.0 100
*

1: Hyeongyoul Pharmaceuticals (Gyeonggi Province, Republic of Korea) 2: Hando Pharmaceuticals (Gyeonggi Province, Republic of Korea) 3: Puleunmuyak Pharmaceuticals (Seoul, Republic of Korea) 4: Kwangduk Pharmaceuticals (Chungnam Province, Republic of Korea).

Table 2

Results of the acute toxicity assessment

Sex: Male (g)

Group Animal Day

0 1 3 7 14
Negative control 1 215.9 247.8 272.4 305.4 363.5
2 235.8 266.3 295.4 337.9 421.0
3 218.9 252.2 279.4 317.7 384.6
4 222.1 254.4 279.0 313.2 376.4
5 223.1 258.0 285.6 324.7 405.5

Mean 223.2 255.7 282.4 319.8 390.2
S.D 7.6 7.0 8.7 12.3 23.0

Ligigeopoong-san (625 mg/kg) 1 232.7 263.1 288.3 318.3 385.4
2 231.0 269.5 300.8 339.7 415.6
3 223.3 255.2 285.1 318.7 373.6
4 233.0 267.5 294.7 334.2 411.8
5 225.3 259.0 281.8 314.5 378.4

Mean 229.1 262.9 290.1 325.1 393.0
S.D 4.5 5.9 7.6 11.1 19.4

Ligigeopoong-san (1,250 mg/kg) 1 230.5 268.6 300.1 345.4 429.9
2 220.7 255.0 275.6 316.1 386.2
3 221.2 258.1 247.4 326.7 391.3
4 223.7 259.5 280.2 313.7 389.6
5 226.7 261.3 283.2 331.4 402.1

Mean 224.6 260.5 277.3 326.7 399.8
S.D 4.1 5.1 19.1 12.8 17.8

Ligigeopoong-san (2,500 mg/kg) 1 229.4 262.3 290.5 322.5 382.8
2 233.0 268.8 293.3 326.7 398.9
3 221.6 258.8 279.0 309.2 363.5
4 217.9 255.8 279.8 317.0 396.3
5 221.7 258.0 285.0 277.8 362.5

Mean 224.7 260.7 285.5 310.6 380.8
S.D 6.2 5.1 6.3 19.5 17.4

Sex: Female (g)

Group Animal Day

0 1 3 7 14

Negative control 1 168.6 193.1 197.2 220.8 250.4
2 152.3 174.6 187.7 202.4 230.2
3 153.2 176.0 186.5 196.8 219.2
4 157.1 182.1 196.3 200.8 225.7
5 157.9 183.6 193.4 206.5 231.3

Mean 157.8 181.9 192.2 205.5 231.4
S.D 6.5 7.4 4.9 9.3 11.7

Ligigeopoong-san (625 mg/kg) 1 172.5 196.3 215.2 236.6 274.7
2 154.8 175.6 187.6 201.2 232.7
3 154.7 177.8 193.5 206.5 235.5
4 152.4 174.6 188.8 201.7 232.7
5 163.4 187.3 193.7 196.2 221.8

Mean 159.6 182.3 195.8 208.4 239.5
S.D 8.4 9.3 11.2 16.2 20.4

Ligigeopoong-san (1,250 mg/kg) 1 164.9 190.8 203.6 213.0 245.0
2 151.7 171.7 184.5 189.9 222.3
3 161.5 181.6 195.8 215.2 249.8
4 158.3 180.6 189.6 201.3 219.4
5 160.4 177.9 196.5 207.1 238.6

Mean 159.4 180.5 194.0 205.3 235.0
S.D 4.9 6.9 7.3 10.2 13.6

Ligigeopoong-san (2,500 mg/kg) 1 152.9 176.7 181.8 188.5 212.7
2 165.3 189.6 203.4 225.3 266.3
3 152.8 178.9 190.6 197.6 225.7
4 157.3 179.9 196.0 208.5 238.2
5 155.0 180.3 195.3 212.2 243.4

Mean 156.7 181.1 193.4 206.4 237.3
S.D 5.2 5.0 7.9 14.1 20.1

S.D (Standard deviation)

Table 3

Results of the bacterial reverse mutation test without metabolic activation system

Strain Dose (μg/plate) Primary experiment Secondary experiment

PPT TOX Revertant colony Mean S.D Ratio PPT TOX Revertant colony Mean S.D Ratio


1 2 3 1 2 3
TA98 0 - - 19 25 18 21 3.8 [1.0] - - 17 17 13 16 2.3 [1.0]
6.86 - - 18 25 25 23 4.0 [1.1] - - - - - - - -
20.6 - - 17 24 23 21 3.8 [1.0] - - - - - - - -
61.7 - - 25 27 24 25 1.5 [1.2] - - 11 8 14 11 3.0 [0.7]
185.2 - - 25 26 18 23 4.4 [1.1] - - 13 19 14 15 3.2 [1.0]
555.6 - - 21 18 27 22 4.6 [1.1] - - 11 12 20 14 4.9 [0.9]
1,666.7 - - 17 18 24 20 3.8 [1.0] - - 18 14 22 18 4.0 [1.1]
5,000.0 - - 18 25 21 21 3.5 [1.0] - - 25 22 19 22 3.0 [1.4]
2-NF (0.5) - - 160 129 145 145 15.5 [7.0] - - 160 287 116 188 88.8 [12.0]

TA100 0 - - 108 93 109 103 9.0 [1.0] - - 81 68 81 77 7.5 [1.0]
6.86 - - 95 102 91 96 5.6 [0.9] - - - - - - - -
20.6 - - 92 105 107 101 8.1 [1.0] - - - - - - - -
61.7 - - 96 93 96 95 1.7 [0.9] - - 81 82 86 83 2.6 [1.1]
185.2 - - 85 98 95 93 6.8 [0.9] - - 87 83 81 84 3.1 [1.1]
555.6 - - 94 91 94 93 1.7 [0.9] - - 73 89 86 83 8.5 [1.1]
1,666.7 - - 100 103 107 103 3.5 [1.0] - - 97 89 87 91 5.3 [1.2]
5,000.0 - - 100 118 121 113 11.4 [1.1] - - 130 115 105 117 12.6 [1.5]
SA (1.0) - - 682 726 700 703 22.1 [6.8] - - 602 595 644 614 26.5 [8.0]

TA1535 0 - - 10 9 9 9 0.6 [1.0] - - 11 8 9 9 1.5 [1.0]
6.86 - - 9 9 9 9 0.0 [1.0] - - - - - - - -
20.6 - - 10 10 9 10 0.6 [1.0] - - - - - - - -
61.7 - - 10 8 8 9 1.2 [0.9] - - 11 9 11 10 1.2 [1.1]
185.2 - - 9 8 9 9 0.6 [0.9] - - 7 9 11 9 2.0 [1.0]
555.6 - - 10 8 9 9 1.0 [1.0] - - 10 9 9 9 0.6 [1.0]
1,666.7 - - 9 11 10 10 1.0 [1.1] - - 8 10 7 8 1.5 [0.9]
5,000.0 - - 9 9 11 10 1.2 [1.0] - - 9 10 11 10 1.0 [1.1]
SA (1.0) - - 490 495 484 490 5.5 [52.5] - - 422 459 441 441 18.5 [47.2]

TA1537 0 - - 6 7 7 7 0.6 [1.0] - - 11 12 12 12 0.6 [1.0]
6.86 - - 8 6 6 7 1.2 [1.0] - - - - - - - -
20.6 - - 6 6 6 6 0.0 [0.9] - - - - - - - -
61.7 - - 6 7 6 6 0.6 [1.0] - - 8 9 10 9 1.0 [0.8]
185.2 - - 6 7 7 7 0.6 [1.0] - - 8 10 12 10 2.0 [0.9]
555.6 - - 7 8 9 8 1.0 [1.2] - - 12 9 12 11 1.7 [0.9]
1,666.7 - - 7 8 7 7 0.6 [1.1] - - 12 12 9 11 1.7 [0.9]
5,000.0 - - 7 10 9 9 1.5 [1.3] - - 12 9 14 12 2.5 [1.0]
9-AA (40.0) - - 201 236 253 230 26.5 [34.5] - - 170 192 216 193 23.0 [16.5]

WP2 uvrA 0 - - 46 49 42 46 3.5 [1.0] - - 50 52 49 50 1.5 [1.0]
6.86 - - 48 45 46 46 1.5 [1.0] - - - - - - - -
20.6 - - 45 49 43 46 3.1 [1.0] - - - - - - - -
61.7 - - 43 40 42 42 1.5 [0.9] - - 41 46 42 43 2.6 [0.9]
185.2 - - 49 40 46 45 4.6 [1.0] - - 36 49 44 43 6.6 [0.9]
555.6 - - 45 45 45 45 0.0 [1.0] - - 39 50 39 43 6.4 [0.8]
1,666.7 - - 44 41 41 42 1.7 [0.9] - - 48 49 50 49 1.0 [1.0]
5,000.0 - - 45 49 41 45 4.0 [1.0] - - 43 52 49 48 4.6 [1.0]
4-NQO (0.5) - - 760 736 680 725 41.1 [15.9] - - 762 764 680 735 47.9 [14.6]

PPT (Precipitation), TOX (Toxicity to bacteria), S.D (Standard deviation), Ratio (The percentage of the mean value compared to the negative control value)

Table 4

Results of the bacterial reverse mutation test with metabolic activation system

Strain Dose (μg/plate) Primary experiment Secondary experiment

PPT TOX Revertant colony Mean S.D Ratio PPT TOX Revertant colony Mean S.D Ratio


1 2 3 1 2 3
TA98 0 - - 38 30 34 34 4.0 [1.0] - - 15 13 20 16 3.6 [1.0]

6.86 - - 37 33 28 33 4.5 [1.0] - - - - - - - -
20.6 - - 33 31 30 31 1.5 [0.9] - - - - - - - -
61.7 - - 36 33 34 34 1.5 [1.0] - - 22 22 13 19 5.2 [1.2]
185.2 - - 30 31 36 32 3.2 [1.0] - - 27 22 13 21 7.1 [1.3]
555.6 - - 34 38 31 34 3.5 [1.0] - - 22 22 14 19 4.6 [1.2]
1,666.7 - - 38 32 29 33 4.6 [1.0] - - 20 17 17 18 1.7 [1.1]
5,000.0 - - 39 32 38 36 3.8 [1.1] - - 27 15 22 21 6.0 [1.3]

2-NF (0.5) - - 152 146 136 145 8.1 [4.3] - - 156 135 146 146 10.5 [9.1]

TA100 0 - - 91 82 88 87 4.6 [1.0] - - 79 76 77 77 1.5 [1.0]

6.86 - - 87 92 92 90 2.9 [1.0] - - - - - - - -
20.6 - - 90 97 93 93 3.5 [1.1] - - - - - - - -
61.7 - - 93 93 92 93 0.6 [1.1] - - 91 90 96 92 3.2 [1.2]
185.2 - - 102 100 98 100 2.0 [1.1] - - 89 93 93 92 2.3 [1.2]
555.6 - - 116 105 106 109 6.1 [1.3] - - 102 93 92 96 5.5 [1.2]
1,666.7 - - 100 99 105 101 3.2 [1.2] - - 81 110 85 92 15.7 [1.2]
5,000.0 - - 126 119 103 116 11.8 [1.3] - - 89 108 95 97 9.7 [1.3]

SA (1.0) - - 670 738 660 689 42.4 [7.9] - - 395 479 429 434 42.3 [5.6]

TA1535 0 - - 9 10 7 9 1.5 [1.0] - - 12 10 13 12 1.5 [1.0]

6.86 - - 10 9 10 10 0.6 [1.1] - - - - - - - -
20.6 - - 10 9 8 9 1.0 [1.0] - - - - - - - -
61.7 - - 10 10 8 9 1.2 [1.1] - - 9 10 11 10 1.0 [0.9]
185.2 - - 8 8 8 8 0.0 [0.9] - - 8 11 9 9 1.5 [0.8]
555.6 - - 9 8 9 9 0.6 [1.0] - - 10 11 9 10 1.0 [0.9]
1,666.7 - - 10 9 11 10 1.0 [1.2] - - 12 10 11 11 1.0 [0.9]
5,000.0 - - 9 11 9 10 1.2 [1.1] - - 11 10 12 11 1.0 [0.9]

SA (1.0) - - 275 256 231 254 22.1 [29.3] - - 272 256 289 272 16.5 [23.3]

TA1537 0 - - 12 13 11 12 1.0 [1.1] - - 13 12 12 12 0.6 [1.0]

6.86 - - 10 12 10 11 1.2 [0.9] - - - - - - - -
20.6 - - 14 13 15 14 1.0 [1.2] - - - - - - - -
61.7 - - 13 14 15 14 1.0 [1.2] - - 14 12 13 13 1.0 [1.1]
185.2 - - 14 13 15 14 1.0 [1.2] - - 9 12 14 12 2.5 [0.9]
555.6 - - 15 14 14 14 0.6 [1.2] - - 12 9 14 12 2.5 [0.9]
1,666.7 - - 15 13 14 14 1.0 [1.2] - - 16 11 15 14 2.6 [1.1]
5,000.0 - - 15 15 14 15 0.6 [1.2] - - 9 11 12 11 1.5 [0.9]

9-AA (40.0) - - 380 369 324 358 29.7 [29.8] - - 270 209 281 253 38.8 [20.5]

WP2 uvrA 0 - - 46 46 45 46 0.6 [1.0] - - 48 55 50 51 3.6 [1.0]

6.86 - - 45 42 42 43 1.7 [0.9] - - - - - - - -
20.6 - - 48 39 49 45 5.5 [1.0] - - - - - - - -
61.7 - - 47 43 53 48 5.0 [1.0] - - 44 49 46 46 2.5 [0.9]
185.2 - - 49 40 45 45 4.5 [1.0] - - 44 50 50 48 3.5 [0.9]
555.6 - - 39 39 47 42 4.6 [0.9] - - 51 50 53 51 1.5 [1.0]
1,666.7 - - 43 41 53 46 6.4 [1.0] - - 50 47 50 49 1.7 [1.0]
5,000.0 - - 43 40 54 46 7.4 [1.0] - - 55 55 54 55 0.6 [1.1]

4-NQO (0.5) - - 230 210 218 219 10.1 [4.8] - - 154 161 198 171 23.6 [3.4]

PPT (Precipitation), TOX (Toxicity to bacteria), S.D (Standard deviation), Ratio (The percentage of the mean value compared to the negative control value)

Table 5

Results of the in vitro mammalian chromosomal aberration test

Test substance μg/mL Metabolic Activation Treatment (hour) pH Osmotic pressure RICC (%) Chromosome Type Chromatid Type Multiple aberration Cells with structural aberration (%) Numerical aberration


DEL EXC DEL EXC PP ED
Distilled water 0 + 6 8.30 289 100.0 0 0 1 1 0 0.67 0 0

Ligigeopoong-san 250 + 6 7.64 273 78.6 0 0 1 0 0 0.33 1 0
500 7.41 268 72.7 0 0 0 0 1 0.33 0 0
1,000 7.59 287 66.9 0 0 0 0 0 0.00 0 0
2,000 8.10 288 59.1 0 0 1 0 0 0.33 0 1

Benzo[a]pyrene 20 + 6 8.34 430 66.9 4 0 10 27 0 12.00* 1 0

Distilled water 0 6 8.22 253 100.0 0 0 0 0 0 0.00 1 0

Ligigeopoong-san 250 6 8.12 251 82.2 0 1 1 0 0 0.67 0 0
500 8.00 250 78.7 0 0 1 1 0 0.67 0 0
1,000 8.05 252 75.1 0 0 0 1 0 0.33 0 0
2,000 8.06 297 59.2 0 0 2 0 0 0.67 0 0

Mitomycin C 0.1 6 8.21 279 62.7 0 0 13 23 0 11.00* 1 0

Distilled water 0 24 7.83 251 100.0 0 0 0 1 0 0.33 1 0

Ligigeopoong-san 250 24 7.53 256 82.6 0 0 0 0 0 0.00 0 0
500 7.47 266 75.6 0 0 0 0 0 0.00 1 0
1,000 7.95 257 70.3 0 0 1 0 0 0.33 0 0
2,000 7.55 260 58.1 1 0 2 0 0 1.00 0 0

Mitomycin C 0.1 24 7.77 281 59.9 2 0 8 28 1 12.00* 4 0

RICC (Relative increase in cell count), DEL (Deletion), EXC (Exchange), PP (Polyploidy), ED (Endoreduplication)

*

Significant difference (p < 0.05) from negative control group (Fisher’s exact test).

Table 6

Results of the mammalian erythrocyte micronucleus test

Group / Dose (mg/kg) Animal Dosing (1st) Dosing (2nd) Sacrifice mnPCE Frequency (%) PCE/NCE ratio


BW GS BW GS BW GS PCE NCE Ratio (%)
Negative control (Distilled water) 1 36.5 N 37.0 N 37.4 N 3 0.08 233 267 46.6
2 34.9 N 35.4 N 35.1 N 5 0.13 233 267 46.6
3 34.9 N 34.3 N 33.0 N 3 0.08 239 261 47.8
4 33.2 N 33.4 N 33.3 N 3 0.08 246 254 49.2
5 33.1 N 32.1 N 33.4 N 1 0.03 231 269 46.2

Mean - 34.5 - 34.4 - 34.4 - 3.0 0.08 236.4 263.6 47.3
S.D - 1.4 - 1.9 - 1.8 - 1.4 0.04 6.1 6.1 1.2

Ligigeopoong-san (500 mg/kg) 1 36.4 N 36.9 N 36.6 N 4 0.10 231 269 46.2
2 35.0 N 34.5 N 34.8 N 1 0.03 239 261 47.8
3 34.4 N 35.7 N 33.9 N 3 0.08 233 267 46.6
4 33.4 N 33.9 N 34.2 N 3 0.08 230 270 46.0
5 32.7 N 33.7 N 31.7 N 3 0.08 240 260 48.0

Mean - 34.4 - 34.9 - 34.2 - 2.8 0.07 234.6 265.4 46.9
S.D - 1.5 - 1.3 - 1.8 - 1.1 0.03 4.6 4.6 0.9

Ligigeopoong-san (1,000 mg/kg) 1 36.3 N 35.7 N 37.0 N 3 0.08 236 264 47.2
2 35.1 N 35.1 N 33.8 N 5 0.13 247 253 49.4
3 34.2 N 34.6 N 33.4 N 2 0.05 232 268 46.4
4 33.5 N 33.6 N 33.8 N 6 0.15 239 261 47.8
5 32.6 N 33.1 N 32.1 N 2 0.05 247 253 49.4

Mean - 34.4 - 34.4 - 34.0 - 3.6 0.09 240.2 259.8 48.0
S.D - 1.4 - 1.1 - 1.8 - 1.8 0.05 6.7 6.7 1.3

Ligigeopoong-san (2,000 mg/kg) 1 36.0 N 36.0 N 34.8 N 2 0.05 233 267 46.6
2 35.2 N 35.2 N 34.3 N 4 0.10 232 268 46.4
3 33.8 N 33.8 N 33.3 N 1 0.03 230 270 46.0
4 33.5 N 33.5 N 32.8 N 2 0.05 238 262 47.6
5 31.9 N 31.9 N 32.0 N 2 0.05 231 269 46.2

Mean - 34.4 - 34.1 - 33.4 - 2.2 0.06 232.8 267.2 46.6
S.D - 1.5 - 1.6 - 1.2 - 1.1 0.03 3.1 3.1 0.6

Positive control
Mitomycin C (2 mg/kg)
1 34.8 N 34.8 N 34.6 N 443 11.1 152 348 30.4
2 35.0 N 35.0 N 34.5 N 436 10.9 152 348 30.4
3 34.1 N 34.1 N 33.2 N 438 11.0 135 365 27.0
4 33.8 N 33.8 N 32.7 N 425 10.6 149 351 29.8
5 32.3 N 32.2 N 31.6 N 423 10.6 155 345 31.0

Mean - 34.4 - 34.0 - 33.3 - 433* 10.8 148.6 351.4 29.7
S.D - 1.4 - 1.1 - 1.3 - 8.6 0.22 7.9 7.9 1.6

GS (General symptoms), N (Normal), mnPCE (Micronucleated polychromatic erythrocyte), PCE (Polychromatic erythrocyte), NCE (Normochromatic erythrocyte), Ratio (NCE/PCE+NCE)

*

Significant difference (p < 0.05) from negative control group (Dunnett’s test).