Prediction of Treatment Mechanisms of Scutellariae Radix on Viral Pneumonia Through Network Pharmacology: Focus on Hypoxic State Regulation Through HIF-1α and HSP90

Article information

J Korean Med. 2024;45(2):55-73
Publication date (electronic) : 2024 June 01
doi : https://doi.org/10.13048/jkm.24024
1Department of Korean Medicine, School of Korean Medicine, Pusan National University
2Research Institute for Longevity and Well-Being, Pusan National University
Correspondence to: Won Gun An, Department of Korean Medicine, School of Korean Medicine, Pusan National University, Tel: +82-51-510-8455, E-mail: wgan@pusan.ac.kr
Correspondence to: Youn Sook Kim, Research Institute for Longevity and Well-Being, Pusan National University, Tel: +82-51-510-8455, E-mail: younskim@pusan.ac.kr
§

These authors contributed equally to this work.

Received 2024 April 15; Revised 2024 May 14; Accepted 2024 May 14.

Abstract

Objectives

In this study, we used network-based systems pharmacology analysis and molecular docking methods to predict the therapeutic mechanism of Scutellariae Radix on viral pneumonia.

Methods

We screened active components of Scutellariae Radix and its’ genes by TCMSP. Also, we extracted viral pneumonia related target genes through Gene Cards, CTD and DisGeNet. To construct Protein-protein Interaction, STRING database was used. For functional enrichment, using SRplot platform, genes were classified by 3 categories: cellular component (CC), molecular function (MF) and biological process (BP). Molecular docking was conducted by AutoDockTools (version 4.2.6).

Results

32 Network-based systematic pharmacology analysis identified 37 target genes associated with baicalein. Based on the network and gene ontology analysis of the active ingredient's target genes and disease target genes, we identified nine core genes (AKT1, BAX, BCL2, CASP3, HIF1A, PTGS2, RELA, TP53, VEGFA) and HSP90 as involved. Notably, HIF1A showed the highest relevance, overlapping with two or more utilized programs. Hypoxia-inducible factor 1-alpha (HIF-1α) has been implicated in the expression of inflammatory cytokines, the induction of hypoxia, and the triggering of cytokine storms. Baicalein, a major component of SR, binds to both HIF-1α and HSP90, suggesting that it may be a possible targeted treatment for viral pneumonia.

Conclusions

Baicalein may bind to HIF-1α to control inflammation caused by viral infectious diseases and may also regulate hypoxic conditions to prevent impairment of lung function caused by an overactive immune system. These findings suggest further research into the molecular mechanisms involved in hypoxia and provide a scientific basis for improving the treatment of viral infectious diseases.

Fig. 1

Investigating overlaps between genes derived by applying four keywords related to viral pneumonia to three databases: GeneCards (G), DisGeNET (D), and CTD (C), and Baicalein's target genes.

(A) The keyword is 'Viral Pneumonia’. (B) The keyword is 'Pneumonia Influenza’. (C) The keyword is 'SARS’. (D) The keyword is 'Coronavirus Infection’. The number of genes overlapping between disease-related genes and Baicalein's target genes is represented by black circles.

Fig. 2

Nine Key Genes Common in Four Keywords.

Fig. 3

Protein-Protein Interaction of 26 Key Duplicated Genes Overlapping in Two or More Disease keywords. PPI enrichment p-value: < 1.0e-16.

Fig. 4

Protein-Protein Interaction (PPI) Involving 9 Key Duplicated Genes and HSP90, as Represented in STRING.

(A) 10 nodes connected by 36 edges, averaging 7.2 nodes interacting. PPI enrichment p-value: 0.00267. (B) Genes associated with lung tissue (green nodes). (C) Genes involved in host-virus interaction (blue nodes) and apoptosis (red nodes).

Fig. 5

Ten Compounds and Targets with a High Degree of Association Among the Compounds of Scutellariae Radix and Target genes.

Fig. 6

Gene Ontology Analysis of Scutellariae Radix and Baicalein.

The results for three ontologies, namely Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), for both (A) Scutellariae Radix and (B) Baicalein.

Fig. 7

Predictive model of the binding of baicalein to HSP90 and HIF1A

(A) Gray: protein, HSP90 (PDB ID: 1YET), pink: ligand, baicalein, affinity: −6.7 kcal/mol. (B) Light green: van der waals, Green: conventional hydrogen bond, Pink: Pi-alkyl, Yellow: Pi-sulfur, Purple: Pi-sigma. (C) 3D structure of the intermolecular docking of baicalein and HSP90. (D) Gray: protein, HIF1A (PDB ID: 8HE3), Pink: ligand, baicalein, affinity: −6.6 kcal/mol. (E) Light green: van der waals, Green: conventional hydrogen bond, Pink: Pi-alkyl, Yellow: Pi-anion. (F) 3D detailed structure of the intermolecular docking of baicalein and HIF1A.

Active Compounds of Scutellariae Radix

Targets of Baicalein

Common Genes between Baicalein Target Genes between Each Diseases Keyword.

26 Genes Duplicated Two or More Times in Four Disease Names

References

1. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. 2011;Viral pneumonia. Lancet 377(1):1264–75. 10.1016/S0140-6736(10)61459-6.
2. Lee JY, Kim YJ, Lee ES, Lee YS. 2019;Seasonal trend and mortality in adults with viral pneumonia. Journal of the Korean Society of Emergency Medicine 30(3):265–72.
3. Pagliano P, Sellitto C, Conti V, Ascione T, Esposito S. 2021;Characteristics of viral pneumonia in the COVID-19 era: an update. Infection 49(1):607–16. 10.1007/s15010-021-01603-y.
4. Shun-Shin M, Thompson M, Heneghan C, Perera R, Hamden A, Mant D. 2009;Neuraminidase inhibitors for treatment and prophylaxis of influenza in children: Systematic review and meta-analysis of randomised controlled trials. BMJ 339(1):449. 10.1136/bmj.b3172.
5. Jartti T, Vanto T, Heikkinen T, Ruuskanen O. 2002;Systemic glucocorticoids in childhood expiratory wheezing: relation between age and viral etiology with efficacy. Pediatr Infect Dis J 21(9):873–8. 10.1097/00006454-200209000-00019.
6. Stockman LJ, Bellamy R, Garner P. 2006;SARS: Systematic Review of Treatment Effects. PLoS Med 3(9):1525–31. 10.1371/journal.pmed.0030343.
7. Falagas ME, Vouloumanou EK, Baskouta E, Rafailidis PI, Polyzos K, Rello J. 2010;Treatment options for 2009 H1N1 influenza: Evaluation of the published evidence. International Journal of Antimicrobial Agents 35(1):421–30. 10.1016/j.ijantimicag.2010.01.006.
8. Kwon JE, Ahn JY, Choi BS. 2017;Two patients with Mycoplasma pneumoniae pneumonia progressing to acute respiratory distress syndrome. Allergy, Asthma & Respiratory Disease 5(3):169. 10.4168/aard.2017.5.3.169.
9. National University of Dept. of Internal Medicine. Pulmonary system. Internal Medicine Pulmonary system Seoul: Han culture; 2002. p. 249–313.
10. Shin WY, Hyun MK, Jeong BM, Choi EY, Yoon CH, Jeong JC. 2005;A clinical report of one old aged patient with pneumonia. Korean J Orient Int Med 26(1):229–35.
11. Hwang DY. Bangyakhappyeon 14th edth ed. Seoul: Namsandang; 2017. p. 137.
12. The Committee of Herbalogy textbook. Herbalogy 2013;
13. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. 2021;Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 36(1):497–503. 10.1080/14756366.2021.1873977.
14. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, et al. 2012;A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13(6):6964–82. 10.3390/ijms13066964.
15. Zhuang Z, Wen J, Zhang L, Zhang M, Zhong X, Chen H, et al. 2020;Can network pharmacology identify the anti-virus and anti-inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur J Integr Med 37(1):1–10. 10.1016/j.eujim.2020.101139.
16. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 2019;STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–13. 10.1093/nar/gky1131.
17. Wu G, Hao Q, Liu B, Zhou J, Fan C, Liu R. 2022;Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine 101(1):E30853. 10.1097/MD.0000000000030853.
18. Burnett BP, Jia Q, Zhao Y, Levy RM, Chen S. 2007;A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food, 2007 10(3):442–51. 10.1089/jmf.2006.255.
19. Hwang WD, Im YG, Son BY, Park C, Park D Il, Choi YH. 2013;Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells. J Life Sci 23(4):518–28. 10.5352/JLS.2013.23.4.518.
20. Shen YC, Chiou WF, Chou YC, Chen CF. 2003;Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J Pharmacol 465(1–2):171–81. 10.1089/jmf.2006.255.
21. Yong HS, Ko SG. 2004;Inhibition of Cellular Proliferation and Apoptosis by Scutellaria Bicalensis in MDA-MB-231 Breast Cancer Cells. Korean J Orient Int Med 25(3):451–60.
22. Heo J. Dongeuibogam 5th edth ed. Hadong: Dongeuibogam Publishser; 2016. p. 259.
23. Moya AS, Elena SF, Bracho A, Miralles R, Barrio E. 2000;The evolution of RNA viruses: A population genetics view RNA Viruses: Biological and Population Properties. PNAS 97(13):6967–73. 10.1073/pnas.97.13.6967.
24. Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, et al. 2021;Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 85(1):1–15. 10.1016/j.phymed.2020.153315.
25. Brocard M, Lu J, Hall B, Borah K, Moller-Levet C, Georgana I, et al. 2021;Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages. J Virol 95(20):e01134–21. 10.1128/JVI.01134-21.
26. Wang J, Basagoudanavar SH, Wang X, Hopewell E, Albrecht R, García-Sastre A, et al. 2010;NF-κB RelA Subunit Is Crucial for Early IFN-β Expression and Resistance to RNA Virus Replication. The Journal of Immunology 185(3):1720–9. 10.4049/jimmunol.1000114.
27. Wang Y, Guo X, Fan X, Zhang H, Xue D, Pan Z. 2022;The Protective Effect of Mangiferin on Osteoarthritis: An In Vitro and In Vivo Study. Physiol Res 71(1):135–45. 10.33549/physiolres.934747.
28. Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, et al. 2021;The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors. International Journal of Molecular Sciences 22(1):1–30. 10.3390/ijms22020843.
29. Kim EJ, Kim GT, Kim BM, Lim EG, Kim SY, Kim YM. 2017;Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells. BMC Complement Altern Med 17(1):1–12. 10.1186/s12906-017-1702-7.
30. Semenza GL. 2001;HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13(2):167–71. 10.1016/s0955-0674(00)00194-0.
31. Hwang KY, Oh YT, Yoon H, Lee J, Kim H, Choe W, et al. 2008;Baicalein suppresses hypoxia-induced HIF-1α protein accumulation and activation through inhibition of reactive oxygen species and PI 3-kinase/Akt pathway in BV2 murine microglial cells. Neurosci Lett 444(3):264–9. 10.1016/j.neulet.2008.08.057.
32. Fröhlich S, Boylan J, Mcloughlin P. 2013;Hypoxia-induced inflammation in the lung: A potential therapeutic target in acute lung injury? American Journal of Respiratory Cell and Molecular Biology 48(1):271–9. 10.1165/rcmb.2012-0137TR.
33. Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. 2020;Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica. Springer Nature 41(1):1539–46. 10.1038/s41401-020-00554-8.
34. Brahimi-Horn C, Mazure N, Pouysségur J. 2005;Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cellular Signalling 17(1):1–9. 10.1016/j.cellsig.2004.04.010.
35. Liu J, Liu J, Tong X, Peng W, Wei S, Sun T, et al. 2021;Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther 15(1):3255–76. 10.2147/DDDT.S319786.
36. Zeng Z, Hu J, Jiang J, Xiao G, Yang R, Li S, et al. 2021;Network Pharmacology and Molecular Docking-Based Prediction of the Mechanism of Qianghuo Shengshi Decoction against Rheumatoid Arthritis. Biomed Res Int 2021(1):1–15. 10.1155/2021/6623912.
37. Li X, Tang H, Tang Q, Chen W. 2021;Decoding the Mechanism of Huanglian Jiedu Decoction in Treating Pneumonia Based on Network Pharmacology and Molecular Docking. Front Cell Dev Biol 18(9):1–15. 10.3389/fcell.2021.638366.
38. Li C, Pan J, Xu C, Jin Z, Chen X. 2022;A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. Front Cell Dev Biol 9(1):1–15. 10.3389/fcell.2021.740266.
39. Fan L, Warnecke A, Weder J, Preller M, Zeilinger C. 2022;Triiodothyronine Acts as a Smart Influencer on Hsp90 via a Triiodothyronine Binding Site. Int J Mol Sci 23(13):1–12. 10.3390/ijms23137150.
40. Ramos-Duarte VA, Orlowski A, Jaquenod de Giusti C, Corigliano MG, Legarralde A, Mendoza-Morales LF, et al. 2024;Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen. Vaccine 42(14):3355–3364. 10.1016/j.vaccine.2024.04.036.
41. Lubkowska A, Pluta W, Strońska A, Lalko A. 2021;Role of heat shock proteins (Hsp70 and hsp90) in viral infection. International Journal of Molecular Sciences 22(1):1–15. 10.3390/ijms22179366.
42. Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, et al. 2022;Hsp90 Inhibitors Prevent HSV-1 Replication by Directly Targeting UL42-Hsp90 Complex. Front Microbiol 12(1):1–10. 10.3389/fmicb.2021.797279.

Article information Continued

Fig. 1

Investigating overlaps between genes derived by applying four keywords related to viral pneumonia to three databases: GeneCards (G), DisGeNET (D), and CTD (C), and Baicalein's target genes.

(A) The keyword is 'Viral Pneumonia’. (B) The keyword is 'Pneumonia Influenza’. (C) The keyword is 'SARS’. (D) The keyword is 'Coronavirus Infection’. The number of genes overlapping between disease-related genes and Baicalein's target genes is represented by black circles.

Fig. 2

Nine Key Genes Common in Four Keywords.

Fig. 3

Protein-Protein Interaction of 26 Key Duplicated Genes Overlapping in Two or More Disease keywords. PPI enrichment p-value: < 1.0e-16.

Fig. 4

Protein-Protein Interaction (PPI) Involving 9 Key Duplicated Genes and HSP90, as Represented in STRING.

(A) 10 nodes connected by 36 edges, averaging 7.2 nodes interacting. PPI enrichment p-value: 0.00267. (B) Genes associated with lung tissue (green nodes). (C) Genes involved in host-virus interaction (blue nodes) and apoptosis (red nodes).

Fig. 5

Ten Compounds and Targets with a High Degree of Association Among the Compounds of Scutellariae Radix and Target genes.

Fig. 6

Gene Ontology Analysis of Scutellariae Radix and Baicalein.

The results for three ontologies, namely Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), for both (A) Scutellariae Radix and (B) Baicalein.

Fig. 7

Predictive model of the binding of baicalein to HSP90 and HIF1A

(A) Gray: protein, HSP90 (PDB ID: 1YET), pink: ligand, baicalein, affinity: −6.7 kcal/mol. (B) Light green: van der waals, Green: conventional hydrogen bond, Pink: Pi-alkyl, Yellow: Pi-sulfur, Purple: Pi-sigma. (C) 3D structure of the intermolecular docking of baicalein and HSP90. (D) Gray: protein, HIF1A (PDB ID: 8HE3), Pink: ligand, baicalein, affinity: −6.6 kcal/mol. (E) Light green: van der waals, Green: conventional hydrogen bond, Pink: Pi-alkyl, Yellow: Pi-anion. (F) 3D detailed structure of the intermolecular docking of baicalein and HIF1A.

Table 1

Active Compounds of Scutellariae Radix

Molecule ID Molecule Name Structure and Formula OB (%) Caco-2 DL
MOL000073 ent-Epicatechin 48.96 0.02 0.24
MOL000173 wogonin 30.68 0.79 0.23
MOL000228 (2R)-7-hydroxy-5-methoxy-2-p henylchroman-4-one 55.23 0.87 0.2
MOL000358 beta-sitosterol 36.91 1.32 0.75
MOL000449 Stigmasterol 43.83 1.44 0.76
MOL000525 Norwogonin 39.4 0.6 0.21
MOL000552 5,2'-Dihydroxy-6,7,8-trimethox yflavone 31.71 0.93 0.35
MOL001458 coptisine 30.67 1.21 0.86
MOL001490 bis[(2S)-2-ethylhexyl] benzene-1,2-dicarboxylate 43.59 0.98 0.35
MOL001506 Supraene 33.55 2.08 0.42
MOL001689 acacetin 34.97 0.67 0.24
MOL002714 Baicalein 33.52 0.63 0.21
MOL002879 Diop 43.59 0.79 0.39
MOL002897 epiberberine 43.09 1.17 0.78
MOL002908 5,8,2'-Trihydroxy-7-methoxyfl avone 37.01 0.76 0.27
MOL002909 5,7,2,5-tetrahydroxy-8,6-dimet hoxyflavone 33.82 0.35 0.45
MOL002910 Carthamidin 41.15 0.16 0.24
MOL002914 Eriodyctiol (flavanone) 41.35 0.05 0.24
MOL002915 Salvigenin 49.07 0.86 0.33
MOL002917 5,2',6'-Trihydroxy-7,8-dimetho xyflavone 45.05 0.48 0.33
MOL002925 5,7,2',6'-Tetrahydroxyflavone 37.01 0.18 0.24
MOL002926 dihydrooroxylin A 38.72 0.71 0.23
MOL002927 Skullcapflavone II 69.51 0.68 0.44
MOL002928 oroxylin a 41.37 0.76 0.23
MOL002932 Panicolin 76.26 0.84 0.29
MOL002933 5,7,4'-Trihydroxy-8-methoxyfl avone 36.56 0.46 0.27
MOL002934 NEOBAICALEIN 104.34 0.74 0.44
MOL008206 Moslosooflavone 44.09 1.01 0.25
MOL010415 11,13-Eicosadienoic acid, methyl ester 39.28 1.46 0.23
MOL012245 5,7,4'-trihydroxy-6-methoxyfla vanone 36.63 0.43 0.27
MOL012246 5,7,4'-trihydroxy-8-methoxyfla vanone 74.24 0.37 0.26
MOL012266 rivularin 37.94 0.65 0.37

Table 2

Targets of Baicalein

Target Proteins of Baicalein Gene name UniProt ID
Aryl hydrocarbon receptor AHR P35869
RAC-alpha serine/threonine-protein kinase AKT1 P31749
Arachidonate 12-lipoxygenase, 12S-type ALOX12 P18054
Apolipoprotein D APOD P05090
Androgen receptor AR P10275
Apoptosis regulator BAX BAX Q07812
Apoptosis regulator Bcl-2 BCL2 P10415
Calmodulin CALM1 P0DP23
Caspase-3 CASP3 P42574
G2/mitotic-specific cyclin-B1 CCNB1 P14635
Cell division control protein 2 homolog CDK1 P06493
Cytochrome c CYCS P99999
Dipeptidyl peptidase IV DPP4 P27487
Egl nine homolog 1 EGLN1 Q9GZT9
Fatty acid-binding protein, epidermal FABP5 Q01469
Proto-oncogene c-Fos FOS P01100
Fos-related antigen 1 FOSL1 P15407
Fos-related antigen 2 FOSL2 P15408
Hypoxia-inducible factor 1-alpha HIF1A Q16665
Heat shock protein HSP 90 HSP90AB1 P08238
Insulin-like growth factor II IGF2 P01344
Matrix metalloproteinase-9 MMP9 P14780
Myeloperoxidase MPO P05164
Nuclear receptor coactivator 1 NCOA1 Q15788
Nuclear receptor coactivator 2 NCOA2 Q15596
Nuclear factor of activated T-cells, cytoplasmic 1 NFATC1 O95644
NADPH oxidase 5 NOX5 Q96PH1
CGMP-inhibited 3',5'-cyclic phosphodiesterase A PDE3A Q14432
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit, gamma isoform PIK3CG P48736
mRNA of PKA Catalytic Subunit C-alpha PRKACA P17612
Trypsin-1 PRSS1 P07477
Prostaglandin G/H synthase 1 PTGS1 P23219
Prostaglandin G/H synthase 2 PTGS2 P35354
Transcription factor p65 RELA Q04206
Tudor domain-containing protein 7 TDRD7 Q8NHU6
Cellular tumor antigen p53 TP53 P04637
Vascular endothelial growth factor A VEGFA P15692

Table 3

Common Genes between Baicalein Target Genes between Each Diseases Keyword.

Viral Pneumonia Pneumonia Influenza SARS Coronavirus Infection
AHR AHR CASP3 DPP4
AKT1 AKT1 AKT1 AHR
APOD BAX APOD AKT1
AR BCL2 AR APOD
BAX CASP3 BAX AR
BCL2 DPP4 BCL2 BAX
CASP3 FABP5 CCNB1 BCL2
CDK1 FOSL1 CYCS CALM1
CYCS HIF1A FOS CASP3
EGLN1 MMP9 FOSL1 CCNB1
FABP5 MPO HIF1A CDK1
FOS PIK3CG MMP9 FABP5
FOSL1 PRSS1 MPO FOS
FOSL2 PTGS1 NFATC1 HIF1A
HIF1A PTGS2 PTGS2 HSP90AB1
IGF2 RELA RELA PIK3CG
MMP9 TP53 TP53 PRKACA
MPO VEGFA VEGFA PRSS1
NFATC1 PTGS2
NOX5 RELA
PDE3A TP53
PIK3CG VEGFA
PRKACA
PRSS1
PTGS1
PTGS2
RELA
TP53
VEGFA

Table 4

26 Genes Duplicated Two or More Times in Four Disease Names

Duplicated 4 times Duplicated 3 times Duplicated 2 times
AKT1 AHR CDK1
BAX FABP5 PRKACA
BCL2 PIK3CG PTGS1
CASP3 PRSS1 DPP4
HIF1A FOSL1 CYCS
PTGS2 MMP9 NFATC1
RELA MPO CCNB1
TP53 APOD
VEGFA AR
FOS