The Effect of Laser Therapy for Stroke Patients : A Systematic Review and Meta-analysis

Article information

J Korean Med. 2024;45(1):44-63
Publication date (electronic) : 2024 March 1
doi : https://doi.org/10.13048/jkm.24003
1Department of Internal Korean Medicine, College of Korean Medicine, Sangji University
Correspondence to: Seung-ho Sun, Department of Internal Korean Medicine, College of Korean Medicine, Sangji University, Tel: +82-33-741-9202, Fax: +82-33-732-2124, E-mail: sunguy2001@hanmail.net
Received 2023 November 17; Revised 2024 February 9; Accepted 2024 February 16.

Abstract

Objectives

This study is purposed to investigate the effect and safety of laser therapy for stroke patients by systematic review and meta-analysis of the randomized controlled trials (RCTs).

Methods

RCTs on the treatment of laser therapy for stroke patients were selected among the literature published from January 2000 to June 2022 in twelve domestic and foreign databases. The quality of the literature was evaluated using the Cochrane’s Risk of Bias tool and RevMan 5.4 was used for the synthesis of results.

Results

Total 2,598 patients with stroke were finally selected from 18 RCTs. Meta-analysis showed that laser therapy was effective in significantly improving activities of daily living (MBI), motor function (effective rate), upper motor function (FMA-UE), shoulder pain related factors (CGRP, ET-1, BK). Overall, the risk of bias was uncertain or low in the quality assessment of the literature.

Conclusions

Although it is unclear that laser therapy is more effective than sham laser, laser therapy might be more effective in improving symptoms than conventional rehabilitation alone. Furthermore, no serious adverse events were founded in laser therapy studies. However, the quality of the selected literature was generally low. Therefore, further studies with high methodological quality on laser therapy for stroke patients would be required in the future.

Fig. 1

PRISMA flow chart of study selection for Literature Reviews.

RISS: Research Information Sharing Service, NDSL: National Digital, Science Library, OASIS: Oriental Medicine Advanced Searching, Integrated System, CNKI: China National Knowledge Infrastructure.

Fig. 2

Results of meta-analysis for 0–2 score ratio of mRS (Laser therapy vs. Sham). mRS : modified Rankin Scale.

Fig. 3

Results of meta-analysis for MBI score (Laser therapy + Rehab vs. Rehab). MBI: Modified Bathel Index, Rehab: rehabilitation therapy.

Fig. 4

Results of meta-analysis for total effective rate (Laser therapy + Rehab vs. Rehab). Rehab: rehabilitation therapy.

Fig. 5

Results of meta-analysis for FMA-UE (Laser therapy + Rehab vs. Rehab). FMA-UE : The Fugl-Meyer Assessment for upper extremity, Rehab: rehabilitation therapy.

Fig. 6

Results of meta-analysis for VAS (Laser therapy + Rehab vs. Rehab). VAS : visual analogue scale, Rehab: rehabilitation therapy.

Fig. 7

Results of meta-analysis for CGRP (Laser therapy + Rehab vs. Rehab). CGRP : calcitonin gene-related peptide, Rehab: rehabilitation therapy.

Fig. 8

Results of meta-analysis for ET-1 (Laser therapy + Rehab vs. Rehab). ET-1 : endothelin 1, Rehab: rehabilitation therapy.

Fig. 9

Results of meta-analysis for BK (Laser therapy + Rehab vs. Rehab). BK : bradykinin, Rehab: rehabilitation therapy.

Fig. 10

Risk of bias graph.

Fig. 11

Risk of bias summary.

+ : Low risk of bias, - : High risk of bias, ? : Unclear risk of bias.

Summary of the Randomized Controlled Trials of Laser Therapy for Stroke

References

1. Korean stroke society. Textbook of stroke 2nd edth ed. Seoul: PanMun education; 2015. 3p. 57–63. p. 389. p. 527. p. 550.
2. Mercier L, Audet T, Hebert R, Rochette A, Dubois M.-F. Impact of motor, cognitive, and perceptual disorders on ability to perform activities of daily living after stroke. Stroke 2001;32(11):2602–8. http://doi.org/10.1161/hs1101.098154.
3. Hong KS, Bang OY, Kang DW, Yu KH, Bae HJ, Lee JS, et al. Stroke statistics in Korea: part I. Epidemiology and risk factors: a report from the korean stroke society and clinical research center for stroke. J Stroke 2013;15(1):2–20. http://doi.org/10.5853/jos.2013.15.1.2.
4. Opara JA, Jaracz K. Quality of life of post-stroke patients and their caregivers. J Med Life 2010;3(3):216–20. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018998/.
5. Lee KG, Shin JH, Lee KJ, Sun SH, Jang IS. Review on Laser or LED Therapy for the Photobiomodulation of Diseases of the Cerebral Nervous System. J. Int. Korean Med 2014;35(4):546–55. Available from https://www.jikm.or.kr/journal/view.php?number=1777.
6. Kim HH, Nam DW, Lee SH. Fundamentals and Research Trend of Laser Acupuncture. J Korean Acupunct Moxib Soc 2009;26(6):21–30. Available from https://koreascience.kr/article/JAKO200921147395853.page.
7. Tuner J, Hode L. Laser Therapy Seoul: JeongDam; 2011. p. 8–9. p. 104–7.
8. Han HJ, Kang KW, Kang SY, Kim LH, Jang IS. The Clinical Indication of Low-Level Laser Therapy Using ICD-10. J Int Korean Med 2018;36(4):561–9. Available from https://www.jikm.or.kr/m/journal/view.php?number=1881.
9. Howard BC, Roberta TC, Michael RH, James C. The Use of Low Level Laser Therapy(LLLT) For Musculoskeletal Pain. MOJ Orthop Rheumatol 2015;2(5):00068. http://doi.org/10.15406/mojor.2015.02.00068.
10. Moskvin SV, Khadartsev AA. Methods of effective low-level laser therapy in the treatment of patients with bronchial asthma (literature review). Biomedicine(Taipei) 2020;10(1):1–20. http://doi.org/10.37796/2211-8039.1000.
11. Gottschling S, Meyer S, Gribova I, Distler L, Berrang J, Gortner L, et al. Laser acupuncture in children with headache : A double-blind, randomized, bicenter, placebo controlled trial. Pain 2008;137:405–12. http://doi.org/10.1016/j.pain.2007.10.004.
12. Yi WJ, Zhang L, Wang ZZ, Chu XH, Chen J. Research progress of laser therapy in rehabilitation of stroke patients. LASER JOURNAL 2021;(9)42(9):198–201.
13. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions Ver 5.1.0 [updated Mar 2011] The Cochrane Collaboration; 2011. Available from http://handbook.cochrane.org.
14. Higgins JPT, Green S. Analyzing and presenting results. Cochrane handbook for systematic reviews of interventions 4.2.6 Chichester, UK: John Wiley&Sons Inc; 2008. p. 79–165.
15. Kim SY, Park JE, Seo HJ, Lee YJ, Jang BH, Son HJ, et al. NECA’s guidance for undertaking systematic reviews and meta-analyses for intervention National Evidence-based Healthcare Collaborating Agency; 2011. [in Korean].
16. Lampl Y, Zivin J, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy. Results of the NeuroThera effectiveness and safety trial-1(NEST-1). Stroke 2007;38:1843–9. http://doi.org/10.1161/STROKEAHA.106.478230.
17. Zivin J, Albers G, Bornstein N, Chippendale T, Dahlof B, Devlin T, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 2009;40(4):1359–64. http://doi.org/10.1161/STROKEAHA.109.547547.
18. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, et al. Transcranial Laser Therapy in Acute Stroke Treatment results of Neurothera Effectiveness and Safety Trial 3, a Phase III Clinical End Point Device Trial. Stroke 2014;45(11):3187–93. http://doi.org/10.1161/STROKEAHA.114.005795.
19. Jiang GF, Zong LQ, Yin YJ, Xuan ZW. Effects of Laser therapy on Dysphagia after Acute Stroke(激光血疗对急性脑卒中后吞咽功能 障碍的疗效评价). Modern Rehabilitation 2001;5(9):62.
20. Luo YW, Luo WH, Hwang BY. Analysis of the Results of Exercise Function after Stroke by Laser Therapy(超激光疼痛治疗仪对脑卒中后 运动功能干预结果分析). Modern Rehabilitation 2001;5(2):88. http://doi.org/10.3321/j.issn:1673-8225.2001.02.069.
21. Pan CH, Pu SX. Effects of Early Intravascular Laser Blood Irradiation and Rehabilitation on Motor Function of Upper and Lower Extremities and Activities of Daily Living in the Patients with Acute Stroke. Chinese Journal of Rehabilitation 2003;18(6):363–4.
22. Liu QS, Wu JX, Liu HL, Hong Li. Effects of He-Ne laser intravascular irradiation on hemorheology and blood lipid of acute cerebral infarction patients. Chinese Journal of Clinical Rehabilitation 2005;9(1):66–9.
23. Azra K, Suada KD, Farid L. Laser therapy of painful shoulder and shoulder-hand syndrome in treatment of patients after the stroke. Bosn J Basic Med Sci 2009;9(1):59–65. http://doi.org/10.17305/bjbms.2009.2858.
24. Feng YM, Cheng ZP, Sun H, Shi D. Laser acupuncture treatment in stroke patients with hemiplegia Applications. LASER JOURNAL 2013;34(6):70–1.
25. Hu YL, Xiao YH, Liu AM, Hua YP, Huang Y. Effectiveness of Low Level Laser Combined with Shoulder Control Training in the Treatment of Shoulder Pain in Elderly Hemiplegic Patients with Cerebral Hemiplegia (低强度激光结合肩部控制训练治疗老年脑卒中偏 瘫病人肩痛的疗效观察). Practical Geriatrics 2017;31(2):175–7.
26. Jan F, Naeem A, Malik AN, Amjad I, Malik T. Comparison of low level laser therapy and interferential current on post stroke shoulder pain. J Pak Med Assoc 2017;67(5):788–9.
27. Yu HX, Yang CS, Jia J, He L, Wu GY, Zhang R, et al. Effects of laser radiation at acupoint and hand projection areas of brain on hand and upper extremity function of early stroke patients. Chinese Journal of Reha-bilitation Medicine 2018;33(3):315–8. http://doi.org/10.3969/j.issn.1001-1242.2018.03.012.
28. Sun L, Shen XY, Ye W, Yan S. Curative effectiveness of laser irradiation in nasal cavity for patients with cognitive impairment after stroke. Chinese Journal of Rehabilitation 2018;33(4):272–4. http://doi.org/10.3870/zgkf.2018.04.002.
29. Zhang NJ, Jin XS, Ji PP. Curative Effect of High Intensity Laser Therapy Combined with Upper Limb Intelligent Feedback Training System on Patients with Complex Regional Pain Syndrome Type I in after Ischemic Stroke. Journal of practical cardiocerebral pulmonary vasculopathy 2020;28(7):120–4. http://doi.org/10.3969/j.issn.1008-5971.2020.07.022.
30. Zhao XK, Zhou JJ, Zhang QQ. Efficacy of high-energy laser in the treatment of early stroke patients with shoulder-hand syndrome. Acta Medicinae Sinica 2021;34(4):132–6. http://doi.org/10.19296/j.cnki.1008-2409.2021-04-034.
31. Qi L, Zhen QX, Liu C, Yan HJ, Liu AX. Effect of semiconductor laser acupoint irradiation combined with intelligent rehabilitation robot on stroke hemiplegia and BBS and FMA scores. Journal of Clinical and Experimental Medicine 2022;21(5):539–42. http://doi.org/10.3969/j.issn.1671-4695.2022.05.025.
32. He BJ, Xia HT, Liang JQ, Zeng DY, Liang YC, Wang ZQ. Evaluation of the effect of super laser irradiation on stellate ganglion combined with pregabalin in the treatment of central neuralgia after stroke. Journal of China Prescription Drug 2022;20(3):110–2. http://doi.org/10.3969/j.issn.1671-945X.2022.03.044.
33. Korkmaz N, Gurcay E, Demir Y, Tezen O, Korkmaz İ, Atar MO, et al. The effectiveness of high-intensity laser therapy in the treatment of post-stroke patients with hemiplegic shoulder pain: a prospective randomized controlled study. Lasers Med Sci 2022;37(1):645–53. http://doi.org/10.1007/s10103-021-03316-y.
34. Park SU, Cho SY, Park JM, Ko CN, Park HJ, Walls B, et al. Integrative treatment modalities for stroke victims in Korea. Complementary Therapies in Clinical Practice 2014;20(1):37–41. http://doi.org/10.1016/j.ctcp.2013.10.007.
35. Yamashita H, Tsukayama H, Tanno Y, Nishijo K. Adverse events in acupuncture and moxibustion treatment: a six-year survey at a national clinic in Japan. J Altern Complement Med 1999;Jun. 5(3):229–36. http://doi.org/10.1089/acm.1999.5.229.
36. Siedentopf CM, Koppelstaetter F, Haala IA, Haid V, Rhomberg P, Ischebeck A, et al. Laser acupuncture induced specific cerebral cortical and subcortical activations in humans. Lasers Med Sci 2005;20(2):68–73. http://doi.org/10.1007/s10103-005-0340-3.
37. Lv J, Shi CH, Deng YJ, Lou WT, Hu j, Shi L, et al. The brain effects of laser acupuncture at thirteen ghost acupoints in healthy individuals: A resting-state functional MRI investigation. Computerized Medical Imaging and Graphics 2016;(12)54:48–54. http://doi.org/10.1016/j.compmedimag.2016.08.003.

Article information Continued

Fig. 1

PRISMA flow chart of study selection for Literature Reviews.

RISS: Research Information Sharing Service, NDSL: National Digital, Science Library, OASIS: Oriental Medicine Advanced Searching, Integrated System, CNKI: China National Knowledge Infrastructure.

Fig. 2

Results of meta-analysis for 0–2 score ratio of mRS (Laser therapy vs. Sham). mRS : modified Rankin Scale.

Fig. 3

Results of meta-analysis for MBI score (Laser therapy + Rehab vs. Rehab). MBI: Modified Bathel Index, Rehab: rehabilitation therapy.

Fig. 4

Results of meta-analysis for total effective rate (Laser therapy + Rehab vs. Rehab). Rehab: rehabilitation therapy.

Fig. 5

Results of meta-analysis for FMA-UE (Laser therapy + Rehab vs. Rehab). FMA-UE : The Fugl-Meyer Assessment for upper extremity, Rehab: rehabilitation therapy.

Fig. 6

Results of meta-analysis for VAS (Laser therapy + Rehab vs. Rehab). VAS : visual analogue scale, Rehab: rehabilitation therapy.

Fig. 7

Results of meta-analysis for CGRP (Laser therapy + Rehab vs. Rehab). CGRP : calcitonin gene-related peptide, Rehab: rehabilitation therapy.

Fig. 8

Results of meta-analysis for ET-1 (Laser therapy + Rehab vs. Rehab). ET-1 : endothelin 1, Rehab: rehabilitation therapy.

Fig. 9

Results of meta-analysis for BK (Laser therapy + Rehab vs. Rehab). BK : bradykinin, Rehab: rehabilitation therapy.

Fig. 10

Risk of bias graph.

Fig. 11

Risk of bias summary.

+ : Low risk of bias, - : High risk of bias, ? : Unclear risk of bias.

Table 1

Summary of the Randomized Controlled Trials of Laser Therapy for Stroke

Authors (year) Study design Sample size (intervention/control) Stroke type (duration) Gender (M/F) (A:intervention B:control) Age (mean age) Intervention Treatment Control Treatment (time × sessions) Main outcomes Adverse event
(time × sessions) Regimen Applied points
Lampl16) (2007) RCT 120 (79/41) Cb-inf (<1 day) A: 43/36
B: 26/15
NR (A: 70.2 B: 68.5) Laser (2 min × NR, mean treatment time 18 hours) 808 nm
1 J/cm2
On the head Sham (2 min × NR, mean treatment time 16 hours) ① NIHSS
② mRS
③ BI
④ GOS
None
Zivin17) (2009) RCT 660 (331/329-2 drop out) Cb-inf (<1 day) A: 183/148
B: 189/138
NR (A: 70.4±12.6 B: 70.0±11.9) Laser (2 min × NR, NR) 808 nm
NR
On the head Sham (2 min × NR, NR)
NIHSS ② mRS
None
Hacke18) (2014) RCT 630 (316/314) Cb-inf (<1 day) 397/233 66±10 (A: 66±10 B: 65±11) Laser (2 min × NR, NR) 808 nm
NR
On the head Sham (2 min × NR, NR) ① NIHSS
② mRS
5: Pain, skin laceration or erythema
Jiang19) (2001) RCT 60 (30/30) Cb-inf Cb-hmrr (<5 days) A: 15/15
B: 16/14
A: 44~80 (52.2)
B: 45~79 (51.2)
Laser (60 min × 5~10 sessions) + conventional treatment (NR) :circulation of blood, etc. 633 nm
NR
Intravascular : NR Conventional treatment (NR) :circulation of blood, etc. ① total effective rate NR
Luo20) (2001) RCT 40 (20/20) Cb-inf : 24
Cb-hmrr: 16 (1 day~3 years)
20/20 47~76 (NR) Laser (10 min × 14 sessions) + conventional treatment(medication), Rehab(NR) NR
70%
Stellate ganglion, LI11, TE5, LI4. GB20, GB30, BL54, SP6, SP9 Conventional treatment (medication), Rehab (NR) ① SSS (Unknown)
② MBI
③Effective rate
NR
Pan21) (2003) RCT 300 (150/150) A:
Cb-inf 126
Cb-hmrr: 24
B:
Cb-inf: 124
Cb-hmrr: 26 (2~10days)
A: 72/78
B: 81/69
A: 40~75 (58.2±10.5)
B: 47~69 (57.5±9.7)
Laser (30~60 min × 8~10 sessions) + conventional treatment (medication), Rehab (45 min × 5~6 days/week × NR) 633 nm
3~5 mW
Intravascular : Median Antebrachial vein Conventional treatment (medication), Rehab (45 min × 5~6 days/week × NR) ① FMA
② BI
NR
Liu22) (2005) RCT 82 (41/41) Cb-inf (2~48hours) A: 28/13
B: 27/14
A: 56~85 (63.4±9.4)
B: 45~83 (64.2±8.7)
Laser (60 min × 20 sessions) 633 nm
1.5~2.0 mW
Intravascular : Median Antebrachial vein Aspirin
300 mg/every day
① General effective rate
② Bood viscosity
③ Red cell hematocrit
④ RBC count
⑤ Cholesterol of blood lipid
None
KARABE GOVIĆ23) (2009) RCT 70 (35/35) NR (NR) NR NR (63.4±8.8) Laser (NR) 830 nm
50 mW
On the painful points in the shoulder and area of swelling dorsum of the hand Rehab(NR) : Electrotherapy ① VAS
② DASH
③ BI
④ FIM
NR
Feng24) (2013) RCT 50 (25/25) Cb-inf: 38
Cb-hmrr: 12 (NR)
A: 18/7
B: 18/7
33~71 (NR) Laser (5~15 min × 14 sessions) 633 nm
10 mW
LI4, PC6, LI11, LI10, LI15, GB30, SP10, ST36, GB34, LR3 Conventional treatment; general Rehab (NR) ① Total effective rate 2: Neuralgia
Hu25) (2017) RCT 63 (33/30) A:
Cb-inf: 23
Cb-hmrr: 10
B:
Cb-inf: 22
Cb-hmrr: 8 (<3months)
A: 23/10
B: 21/9
A: 60~72 (65.89±15.12)
B: 61~73 (66.34±15.32)
Laser (20 min × 24 sessions) + Rehab (30~40 min × 24 sessions) : Bobath training, balance training, and etc. 655 nm
4.2 mW
On the shoulder Rehab (30~40 min × 24 sessions) : Bobath training, balance training, and etc. ① VAS
② FMA-UE
NR
Jan26) (2017) RCT 38 (20/18) NR (NR) 21/17 NR (52.92 ± 11.67) Laser (10 min × 10 sessions) 905 nm
400 mW
On single shoulder joint IFC (30 min × 10 sessions) ① VAS
② PSS
③ SPADI
NR
Yu27) (2018) RCT 36 (19/17) Cb-inf (<2weeks) A: 12/7
B: 13/4
NR (A: 54.24±13.12
B: 57.28±9.87)
Laser (20 min × 30 sessions) + Rehab (45 min × 6 weeks): occupational therapy, balance training, and etc. 633 nm
120 mW
Head and GV20, LI10, TE5, LI4 Rehab (45 min × 6 weeks) :occupational therapy, balance training, and etc. ① FMA-UE
② MSS
③ MBI
NR
Sun28) (2018) RCT 50 (25/25) A:
Cb-inf: 19
Cb-hmrr: 6
B:
Cb-inf: 18
Cb-hmrr: 7 (<10days)
A: 18/7
B: 20/5
NR (A: 61.03±1.82
B: 60.64±2.51)
Laser (30 min × 48 sessions) + cognitive training (30 min × 48 sessions) and medication 650 nm
3.5~4.0 mW
In nasal cavity Cognitive training (30 min × 48 sessions) and medication ① MMSE
② MoCA
③ LOTCA
NR
Zhang29) (2020) RCT 60 (30/30) NR (<12weeks) A: 17/13
B: 15/15
NR (A: 67.3±4.2 B: 68.5±5.0) Laser (5~10 min × 36 sessions) + Intelligent feedback training system (20 min × 36 sessions) 1064 nm
8~10W
On the shoulder (biceps, triceps, deltoid, rotator cuff) Intelligent feedback training system (20 min × 36 sessions) ① PRI
② Swelling degree of the affected side
③ ROM
④ CRGP
⑤ ET-1
⑥ BK
None
Zhao30) (2021) RCT 101 (51/50) A: Cb-inf: 26
Cb-hmrr: 25
B: Cb-inf: 24
Cb-hmrr: 26 (<4months)
A: 27/24
B: 27/23
A : 51~67 (58.12 ± 2.41)
B: 49~65 (57.89±2.37)
Laser (10 min × 28 sessions) + Rehab (30 min × 28 sessions) : stretching, hot pack, ice pack, and etc. 1064 nm
8 W
On the shoulder (biceps, triceps, deltoid, rotator cuff) Rehab (30 min × 28 sessions) : stretching, hot pack, ice pack, and etc. ① Effective rate
② EMG
③ CGRP
④ ET-1
⑤ BK
⑥ FMA
⑦ MBI
NR
Qi31) (2022) RCT 114 (57/57) A:
Cb-inf: 38
Cb-hmrr: 19
B:
Cb-inf: 35
Cb-hmrr: 22 (NR)
A: 30/27
B: 33/24
48~76 (64.75±6.65)
A: 64.72±6.62
B: 64.79±6.69
Laser (20 min × 30 sessions) + Intelligent Rehabilitation robot (20~30 min × 30 sessions) 660 nm
30 mW
LU6, TE14, LI11, LI4, LI10, TE5, SP10, ST36, SP6, BL40, GB30, GB34, KI6 Intelligent Rehabilitation robot (20~30 min × 30 sessions) ① Velocity of PCA, MCA, ACA
② BBS
③ FMA-UE
④ FMA-LE
NR
He32) (2022) RCT 80 (40/40) Cb-inf
Cb-hmrr (NR)
NR NR Laser (10 min × 14 sessions) + Pregabalin (bid × 14 sessions) 633 nm
NR
On stellate ganglion Pregabalin (bid × 14 sessions) ① VAS
② SF-36
③ IL-6
3: Drowsiness, dizziness, drying mouth
Korkmaz33) (2022) RCT 44 (22/22-3:dr op) A: Cb-inf: 15
Cb-hmrr: 7
B: Cb-inf: 17
Cb-hmrr: 2 (>6months)
A: 10/12
B: 13/6
NR (A: 65.7±11.6 B: 60.4±12.1) Laser (7.5 min × 9 sessions) + Rehab (NR × 15 sessions) : passive, active, stretching, strengthening, and mobilization exercises 1064 nm
8 W
On the shoulder (rotator cuff) Rehab (NR × 15 sessions) : passive, active, stretching, strengthening, and mobilization exercises ① VAS
② ROM
③ BRS
④ MAS
⑤ FIM
⑥ SPADI
⑦ NHP
⑧ PTRCT
NR

RCT : randomized controlled trial, M: Male, F: Female, NR : not reported, Cb-inf : cerebral infarction, Cb-hrr : cerebral hemorrhage, NIHSS : National Institutes of Health Stroke Scale, mRS : modified Rankin Scale, BI : Barthel Index, GOS : Glasgow Outcome Scale, Rehab : rehabilitation therapy, MBI : Modified Barthel Index, FMA : The Fugl-Meyer Assessment, RBC : Red Blood Cell, VAS : visual analogue scale, DASH: The Disabilities of the Arm, Shoulder and Hand, FIM : functional independence measure, FMA-UE : The Fugl-Meyer Assessment for upper extremity, IFC : Interferential current treatment, PSS : Penn shoulders scale, SPADI : Shoulder Pain and Disability Index, MSS : motor status scale, MMSE : The Mini-Mental State Examination, MoCA : Montreal Cognitive Assessment, LOTCA : Loewenstein Occupational Therapy Cognitive Assessment, PRI : pain rating index, ROM : range of motion, CGRP : calcitonin gene-related peptide, ET-1 : endothelin 1, BK : bradykinin, EMG : electromyogram, PCA : posterior cerebral artery, MCA : middle cerebral artery, ACA : anterior cerebral artery, BBS : Berg Balance Scale, FMA-LE : The Fugl-Meyer Assessment for lower extremity, SF-36 : Short form 36 Questionnaire, IL-6 : Interleukin-6, BRS : Brunnstrom recovering staging, MAS : modified Ashworth scale, NHP : Nottingham health profile, PTRCT : partial thickness rotator cuff tear.