Comparative study on stability and efficacy of Banhasasim-tang decoction depending on the preservation temperature and periods

Article information

J Korean Med. 2016;37(1):21-33
Publication date (electronic) : 2016 March 31
doi : https://doi.org/10.13048/jkm.16003
1K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
2KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
3Korean Medicine Life Science, University of Science & Technology, Daejeon 34113, Republic of Korea
Correspondence to: 정수진 (Soo-Jin Jeong), 대전광역시 유성구 유성대로 1672 한국한의학연구원 한의약융합연구부, Tel: +82-42-868-9651, Fax: +82-42-864-2120, E-mail: sjijeong@kiom.re.kr
Received 2016 January 27; Revised 2016 March 14; Accepted 2016 March 17.

Abstract

Objectives:

Banhasasim-tang (BHSST) has been used for the treatment of the digestive and gastric diseases in Korea. This study aimed to investigate the stability and biological activities of BHSST decoction depending on the preservation temperature and periods.

Methods:

BHSST decoction was preserved at room temperatures (R/T, 23±1°C) or refrigeration (4°C) for 0, 30, 60 and 90 days. To evaluate the stability of BHSST decoction, pH and sugar content were estimated. In addition, high-performance liquid chromatography (HPLC) analysis was performed to determine marker compounds of BHSST decoction. To evaluate anti-inflammatory effect, nitric oxide (NO) and prostaglandin E2 (PGE2) productions were measured in LPS-stimulated RAW 264.7 macrophages. Antioxidant activity was examined using the assays for 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 1-1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities.

Results:

There was no change in pH and sugar content depending on the preservation temperature and periods of BHSST decoction. Among the major components of BHSST, contents of liquiritin, baicalein and wogonin was reduced time-dependently both at R/T and 4°C. Inhibitory effects of BHSST decoction on NO and PGE2 productions were slightly decreased in a time-dependent manner by 90 days of preservation. In addition, BHSST decoction maintained ABTS and DPPH radical scavenging activities by 60 days while significantly reducing the activities in 90 days of preservation at R/T. By contrast, BHSST decoction had no significant change of ABTS and DPPH radical scavenging activities by 90 days at 4°C.

Conclusions:

Our results suggest that the stability and efficacy of BHSST decoction are maintained for 60 days at 4°C rather than R/T.

Fig. 1.

Chemical structure of Banhasasim-tang.

Fig. 2.

Typical HPLC chromatogram of Banhasasim-tang decoction at wavelength 254 (A) and 275 (B) nm. Liquiritin (1), baicalin (2), liquiritigenin (3), wogonoside (4), baicalein (5), glycyrrhizin (6), and wogonin (7).

Fig. 3.

Cytotocicity of Banhasasim-tang stored with different preservation conditions and periods in RAW 264.7 macrophages. BHSST: Banhasasim-tang.

Fig. 4.

Effect of Banhasasim-tang stored with different preservation conditions and periods on LPS-induced NO (A) and PGE2 (B) production in RAW 264.7 macrophages. Cells were pre-treated with Banhasasim-tang for 4 h and then co-stimulated with LPS (1 μg/mL) for 20 h. The levels of NO and PGE2 released into the culture supernatant were measured using Griess reagent and ELISA kit, respectively. The data are presented as the means ± SEM (n = 3). ##p<0.01 versus vehicle-treated control group; *p<0.05 and **p<0.01 versus LPS-treated group. BHSST: Banhasasim-tang, ID: indomethacin.

Fig. 5.

Effect of Banhasasim-tang stored with different preservation conditions and periods on ABTS (A) and DPPH (B) radical scavenging activity. ABTS or DPPH radical solution was added to a 96-well plate containing of several concentrations (50, 100, 200, 400 μg/mL) of Banhasasim-tang. After 30 min of incubation, the absorbance (ABTS; 734 nm, DPPH; 517nm) was measured using a microplate reader. RC50 is concentration of the sample which is required to scavenge 50% of radicals. The data are presented as the means ± SEM (n = 3). **p<0.01 versus 0 days.

Composition of Banhasasim-tang

pH and sugar content of Banhasasim-tang by preservation temperature and periods

Content of the seven marker compounds in Banhasasim-tang by preservation periods in room temperature

Content of the seven marker compounds in Banhasasim-tang by preservation periods in refrigeration

References

1. Jang IS, Yang CS, Lee SD, Han CH. A review of herbal medicine products associated with toxic events in Korea. J Korean Oriental Med 2007;28(1):1–10.
2. Man SC, Durairajan SS, Kum WF, Lu JH, Huang JD, Cheng CF, et al. Systematic review on the efficacy and safety of herbal medicines for Alzheimer’s disease. J Alzheimer’s Dis 2008;14(2):209–23.
3. Son JY, Shin JW, Son CG. Stability study for herbal drug according to storage conditions and periods. J Korean Oriental Med 2009;30(2):127–32.
4. Jang JK, Shang HL. Seoul: DS print; 1984. p. 188p. 201–2. p. 205–6.
5. Jang JK. Geumgweyolag Seoul: DS print; 1984. p. 360. p. 415.
6. Choi DY, Kim JK, Shang HL. interpretation Seoul: Dae Sung book; 1995. p. 228–230.
7. Park CS. An experimental studies on the effect of Banhasasimtang [master dissertation]. Kyung Hee Univ.; 1988.
8. Ryu BH, Park DW, Chang IK, Ryu KW. The experimental comparative studies on the effects of Banhasasimtang, Saengkangsasimtang, Gamchosasimtang and Banhasasimtang insurance medicine. Kyung Hee Univ Oriental Med J 1989;12:1–17.
9. Lee KG, Cui X, Lim JP. Effect of the Concurrenr Administration of Banhasasim-tang with Cimetidine on Gastric Ulcer in Rats. Korean J Oriental Physiology & Pathology 2002;16(3):572–6.
10. Cho NS. Effects of BanhaSasim-Tang Extract and BanhaSasim-Tang added Rubra Bolus Extract on the Experimental Gastric Ulcer in Rats [master dissertation] Wonkwang Univ.; 1984.
11. Ogata Y. Effect of Hange-Shashin-To (a traditional herbal medicine) on gastric mucin in relation with ethanol-induced injury in rat. Japanese Pharmacol Ther 1993;21(6):109–13.
12. Hanawa T. Oriental medicine tratment LESSON Seoul: Korea Medical Book Publisher; 2001. p. 113.
13. Sisudomyeong. Oriental medicine treatment interpretation Daegu: Tong Yang Total Communication Education Publishing; 1982. p. 502–3.
14. Ministry of Food and Drug Safety (MFDS). MFDS Notification 2013-253 2013;
15. Ministry of Food and Drug Safety (MFDS). MFDS Notification 2013-123 2013;
16. Ministry of Food and Drug Safety (MFDS). MFDS Notification 2009-101 2009;
17. Jin SE, Kim OS, Shin HK, Jeong SJ. Comparative study on biological activities of Gwakhyangjeonggi-san decoction according to the preservation periods. J Korean Med 2014;35(3):60–9.
18. Seo CS, Kim JH, Kim SS, Lim SH, Shin HK. Evaluation of shelf-life of Bojungikgi-tang by long-term storage test. Korean J Pharmacogn 2013;44(2):200–8.
19. Seo CS, Kim JH, Lim SH, Shin HK. Establishment of shelf-life of Ssanghwa-tang by long-term storage test. Korean J Pharmacogn 2012;43(3):257–64.
20. Seo CS, Kim JH, Lim SH, Shin HK. Estimation of shelf-life by long-term storage test of Pyungwi-san. Korean J Oriental Med Prescription 2011;19(1):183–94.
21. Ha H, Shin IS, Lim HS, Jeon WY, Kim JH, Seo CS, et al. Changes in anti-inflammatory effect of Pyungwi-san decoction according to the preservation temperature and period. Korean J Oriental Med Prescription 2012;20(2):29–35.
22. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003;24(1):25–9.
23. Abul KA, Andrew HL, Shiv P. Cellular & molecular immunology 6th editionth ed. Seoul: Epublic; 2008. p. 271–96.
24. Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991;91(3C):31S–38S.
25. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239–47.
26. Brüne B, Zhou J, von Knethen A. Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl 2003;(84):S22–4.
27. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 2008;11(1):1–15.
28. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 2009;10(6):773–81.
29. Fan GW, Zhang Y, Jiang X, Zhu Y, Wang B, Su L, et al. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-κ B-dependent pathways. Inflammation 2013;36(6):1584–91.
30. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015;20(7):13041–54.
31. Lee W, Ku SK, Bae JS. Anti-inflammatory effects of baicalin, baicalein, and wogonin in vitro and in vivo. Inflammation 2015;38(1):110–25.
32. Yang YZ, Tang YZ, Liu YH. Wogonoside displays anti-inflammatory effects through modulating inflammatory mediator expression using RAW264.7 cells. J Ethnopharmacol 2013;148(1):271–6.
33. Racková L, Jancinová V, Petríková M, Drábiková K, Nosál R, Stefek M, et al. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Nat Prod Res 2007;21(14):1234–41.
34. Li XL, Zhou AG, Zhang L, Chen WJ. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. Int J Mol Sci 2011;12(2):905–16.
35. Woźniak D, Dryś A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res 2015;29(16):1567–70.
36. Sun YX, Tang Y, Wu AL, Liu T, Dai XL, Zheng QS, et al. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. J Asian Nat Prod Res 2010;12(12):1051–60.
37. Choi EM, Suh KS, Lee YS. Liquiritigenin restores osteoblast damage through regulating oxidative stress and mitochondrial dysfunction. Phytother Res 2014;28(6):880–6.

Article information Continued

Fig. 1.

Chemical structure of Banhasasim-tang.

Fig. 2.

Typical HPLC chromatogram of Banhasasim-tang decoction at wavelength 254 (A) and 275 (B) nm. Liquiritin (1), baicalin (2), liquiritigenin (3), wogonoside (4), baicalein (5), glycyrrhizin (6), and wogonin (7).

Fig. 3.

Cytotocicity of Banhasasim-tang stored with different preservation conditions and periods in RAW 264.7 macrophages. BHSST: Banhasasim-tang.

Fig. 4.

Effect of Banhasasim-tang stored with different preservation conditions and periods on LPS-induced NO (A) and PGE2 (B) production in RAW 264.7 macrophages. Cells were pre-treated with Banhasasim-tang for 4 h and then co-stimulated with LPS (1 μg/mL) for 20 h. The levels of NO and PGE2 released into the culture supernatant were measured using Griess reagent and ELISA kit, respectively. The data are presented as the means ± SEM (n = 3). ##p<0.01 versus vehicle-treated control group; *p<0.05 and **p<0.01 versus LPS-treated group. BHSST: Banhasasim-tang, ID: indomethacin.

Fig. 5.

Effect of Banhasasim-tang stored with different preservation conditions and periods on ABTS (A) and DPPH (B) radical scavenging activity. ABTS or DPPH radical solution was added to a 96-well plate containing of several concentrations (50, 100, 200, 400 μg/mL) of Banhasasim-tang. After 30 min of incubation, the absorbance (ABTS; 734 nm, DPPH; 517nm) was measured using a microplate reader. RC50 is concentration of the sample which is required to scavenge 50% of radicals. The data are presented as the means ± SEM (n = 3). **p<0.01 versus 0 days.

Table 1.

Composition of Banhasasim-tang

Herbal medicine Scientific name Amount (g) Origin
Pinelliae Tuber Pinellia ternata 7.500 China
Scutellariae Radix Scutellaria baicalensis 5.625 Gurye, Korea
Ginseng Radix Panax ginseng 5.625 Yeongju, Korea
Glycyrrhizae Radix et Rhizoma Glycyrrhiza uralensis 5.625 China
Zingiberis Rhizoma Zingiber officinale 3.750 Taean, Korea
Coptidis Rhizoma Coptis japonica 1.875 China
Zingiberis Rhizoma Crudus Zingiber officinale 3.750 Ulsan, Korea
Zizyphi Fructus Zizyphus jujuba 3.750 Yeongcheon, Korea

Total amount 37.50

Table 2.

pH and sugar content of Banhasasim-tang by preservation temperature and periods

Storage method Lot pH Sugar content (Brix)

0* 30 60 90 0* 30 60 90
Room temperature 1 4.70 4.65 4.63 4.61 3.13 3.10 2.90 2.87
2 4.70 4.65 4.62 4.61 3.13 3.10 2.93 2.77
3 4.70 4.65 4.62 4.60 3.13 3.10 2.90 2.83
4 4.70 4.65 4.62 4.60 3.13 3.07 2.90 2.87

Refrigeration 1 4.70 4.71 4.70 4.70 3.13 2.87 2.90 2.87
2 4.70 4.71 4.71 4.70 3.13 2.83 2.87 2.90
3 4.70 4.70 4.70 4.70 3.13 2.77 2.87 2.87
4 4.70 4.70 4.70 4.69 3.13 2.93 2.87 2.87
*

day

Table 3.

Content of the seven marker compounds in Banhasasim-tang by preservation periods in room temperature

Lot Compound Content (mg/g)

0* 30 60 90

Mean SD RSD (%) Mean SD RSD (%) Mean SD RSD (%) Mean SD RSD (%)
1 Liquiritin 3.74 0.01 0.19 3.50 0.03 0.79 3.32 0.12 3.51 3.18 0.06 1.75
Baicalin 51.82 0.22 0.43 51.52 0.05 0.10 50.39 0.12 0.24 51.34 1.24 2.41
Liquiritigenin 3.94 0.01 0.29 3.94 0.04 0.91 3.90 0.01 0.16 3.70 0.02 0.61
Wogonoside 14.42 0.05 0.35 15.15 0.06 0.39 14.70 0.03 0.22 15.77 0.03 0.22
Baicalein 0.80 0.00 0.63 0.12 0.00 3.94 0.06 0.00 3.08 0.05 0.00 8.34
Glycyrrhizin 5.61 0.06 1.06 5.97 0.08 1.35 5.38 0.02 0.42 5.32 0.08 1.50
Wogonin 0.77 0.00 0.32 0.62 0.01 2.36 0.11 0.00 0.90 0.03 0.00 7.04

2 Liquiritin 3.74 0.01 0.19 3.46 0.01 0.36 3.47 0.08 2.42 3.18 0.13 4.03
Baicalin 51.82 0.22 0.43 52.13 0.04 0.08 49.66 0.04 0.07 47.51 0.35 0.74
Liquiritigenin 3.94 0.01 0.29 3.94 0.00 0.04 3.89 0.05 1.28 3.69 0.01 0.36
Wogonoside 14.42 0.05 0.35 15.30 0.05 0.30 14.53 0.01 0.08 14.60 0.03 0.21
Baicalein 0.80 0.00 0.63 0.14 0.00 1.82 0.05 0.00 7.22 0.05 0.01 16.27
Glycyrrhizin 5.61 0.06 1.06 5.93 0.07 1.18 5.57 0.03 0.63 5.28 0.05 0.88
Wogonin 0.77 0.00 0.32 0.58 0.02 2.70 0.22 0.00 0.01 0.06 0.00 1.71

3 Liquiritin 3.74 0.01 0.19 3.51 0.01 0.23 3.43 0.04 1.05 3.24 0.02 0.54
Baicalin 51.82 0.22 0.43 52.62 0.14 0.26 49.55 0.08 0.17 51.12 0.87 1.70
Liquiritigenin 3.94 0.01 0.29 3.95 0.00 0.12 3.97 0.06 1.46 3.70 0.04 1.11
Wogonoside 14.42 0.05 0.35 15.57 0.07 0.44 14.44 0.09 0.61 15.45 0.02 0.11
Baicalein 0.80 0.00 0.63 0.14 0.00 1.10 0.06 0.00 6.43 0.04 0.00 8.17
Glycyrrhizin 5.61 0.06 1.06 5.94 0.06 0.98 5.52 0.05 0.97 5.36 0.02 0.38
Wogonin 0.77 0.00 0.32 0.59 0.01 2.22 0.19 0.00 0.79 0.06 0.00 0.19

4 Liquiritin 3.74 0.01 0.19 3.48 0.02 0.66 3.42 0.04 1.26 3.26 0.12 3.71
Baicalin 51.82 0.22 0.43 49.84 0.06 0.12 49.50 0.23 0.46 51.36 0.97 1.89
Liquiritigenin 3.94 0.01 0.29 3.93 0.01 0.26 3.90 0.01 0.34 3.79 0.03 0.82
Wogonoside 14.42 0.05 0.35 14.95 0.01 0.09 14.38 0.04 0.29 15.60 0.04 0.23
Baicalein 0.80 0.00 0.63 0.15 0.00 0.40 0.05 0.00 1.43 0.05 0.00 3.87
Glycyrrhizin 5.61 0.06 1.06 5.99 0.06 1.04 5.46 0.02 0.46 5.26 0.08 1.43
Wogonin 0.77 0.00 0.32 0.60 0.02 2.75 0.18 0.00 1.41 0.10 0.00 0.08
*

day

Table 4.

Content of the seven marker compounds in Banhasasim-tang by preservation periods in refrigeration

Lot Compound Content (mg/g)

0* 30 60 90

Mean SD RSD (%) Mean SD RSD (%) Mean SD RSD (%) Mean SD RSD (%)
1 Liquiritin 3.74 0.01 0.19 3.69 0.02 0.58 3.71 0.01 0.34 3.48 0.01 0.41
Baicalin 51.82 0.22 0.43 49.00 0.08 0.17 46.95 0.05 0.11 55.63 0.73 1.32
Liquiritigenin 3.94 0.01 0.29 3.92 0.02 0.39 3.94 0.01 0.32 3.68 0.04 1.11
Wogonoside 14.42 0.05 0.35 12.96 0.05 0.36 11.35 0.00 0.03 16.60 0.10 0.63
Baicalein 0.80 0.00 0.63 0.68 0.02 2.78 0.14 0.01 3.91 0.39 0.00 0.76
Glycyrrhizin 5.61 0.06 1.06 5.99 0.03 0.44 5.72 0.04 0.76 5.49 0.04 0.79
Wogonin 0.77 0.00 0.32 0.61 0.00 0.21 0.66 0.01 1.21 0.37 0.00 0.06

2 Liquiritin 3.74 0.01 0.19 3.67 0.01 0.31 3.69 0.01 0.40 3.28 0.01 0.38
Baicalin 51.82 0.22 0.43 48.56 0.10 0.21 47.06 0.08 0.17 54.82 0.80 1.45
Liquiritigenin 3.94 0.01 0.29 3.94 0.02 0.48 3.80 0.01 0.38 3.74 0.02 0.51
Wogonoside 14.42 0.05 0.35 12.43 0.04 0.32 12.29 0.00 0.02 15.50 0.01 0.09
Baicalein 0.80 0.00 0.63 0.66 0.01 2.18 0.12 0.00 3.41 0.25 0.01 3.68
Glycyrrhizin 5.61 0.06 1.06 5.97 0.02 0.28 5.66 0.04 0.71 5.39 0.03 0.47
Wogonin 0.77 0.00 0.32 0.69 0.00 0.27 0.56 0.00 0.35 0.16 0.00 1.06

3 Liquiritin 3.74 0.01 0.19 3.76 0.01 0.34 3.71 0.04 1.06 3.30 0.05 1.66
Baicalin 51.82 0.22 0.43 49.81 0.06 0.11 45.80 0.36 0.78 54.94 0.28 0.52
Liquiritigenin 3.94 0.01 0.29 3.95 0.02 0.44 3.94 0.03 0.87 3.68 0.06 1.70
Wogonoside 14.42 0.05 0.35 13.23 0.04 0.29 10.78 0.02 0.21 15.74 0.02 0.13
Baicalein 0.80 0.00 0.63 0.73 0.02 2.20 0.12 0.00 3.37 0.24 0.02 7.91
Glycyrrhizin 5.61 0.06 1.06 5.99 0.06 0.94 5.65 0.05 0.81 5.42 0.02 0.36
Wogonin 0.77 0.00 0.32 0.73 0.00 0.39 0.57 0.00 0.53 0.14 0.00 0.63

4 Liquiritin 3.74 0.01 0.19 3.68 0.01 0.28 3.77 0.10 2.64 3.32 0.07 1.99
Baicalin 51.82 0.22 0.43 46.90 0.06 0.13 46.62 0.05 0.11 55.42 0.33 0.60
Liquiritigenin 3.94 0.01 0.29 3.94 0.01 0.31 3.84 0.12 3.22 3.74 0.03 0.93
Wogonoside 14.42 0.05 0.35 11.96 0.04 0.31 11.52 0.01 0.06 15.93 0.02 0.11
Baicalein 0.80 0.00 0.63 0.66 0.02 2.46 0.14 0.00 1.29 0.26 0.00 1.40
Glycyrrhizin 5.61 0.06 1.06 5.99 0.02 0.25 5.66 0.06 1.07 5.37 0.07 1.21
Wogonin 0.77 0.00 0.32 0.73 0.00 0.35 0.60 0.00 0.24 0.17 0.00 0.32
*

day