AbstractObjectivesWe investigated the potential mechanisms and preliminary clinical advantages of wet cupping therapy (WCT) in reducing oxidative stress and improving insulin resistance. Traditionally used in Eastern and Middle Eastern medicine to address blood stasis, WCT is now being explored for its broader metabolic and anti-inflammatory implications. The therapy involves skin incisions and negative pressure to remove blood, potentially eliminating oxidative metabolites (e.g., malondialdehyde) and inflammatory mediators while enhancing antioxidant defenses such as superoxide dismutase (SOD).
MethodsWe selectively reviewed literature published within the past decade on physiological responses associated with WCT, with particular focus on oxidative stress markers, antioxidant enzyme activities, insulin sensitivity, and metabolic parameters. Additional evidence was examined from studies investigating improvements in microcirculation, immune modulation, and restoration of insulin signaling via the PI3K-Akt pathway.
ResultsPreliminary findings suggest that WCT may contribute to reductions in fasting glucose, insulin resistance (HOMA-IR), and serum ferritin, indicating its potential as an adjunctive approach in managing chronic metabolic conditions such as type 2 diabetes and metabolic syndrome. Several studies report declines in oxidative stress markers (MDA, MPO) and increases in antioxidant enzymes (SOD, GPx, CAT). However, much of the current evidence stems from small-scale, short-term, or non-randomized studies, limiting the strength and generalizability of the conclusions.
ConclusionsWCT appears to offer preliminary metabolic benefits through oxidative stress reduction and insulin sensitivity enhancement. Nonetheless, well-designed randomized controlled trials and long-term studies are essential to confirm its clinical efficacy and establish standardized treatment protocols.
참고문헌1. Chirali I. Z.(2024). Cupping therapy for bodyworkers: A practical manual. 2nd ed. Hanmi Medical Publishing.
2. National Association of Korean Medicine Professors of Cardiovascular and Neurology. (2016). Korean Medicine Circulatory and Neurology Science. Woori Medical Books;p. 175
3. Al-Bedah, A. M. N., Elsubai, I. S., Qureshi, N. A., Aboushanab, T. S., Ali, G. I. M., El-Olemy, A. T., Khalil, M. K. M., & Alqaed, M. S. (2016). Evaluation of wet cupping therapy: Systematic review of randomized clinical trials. Journal of Alternative and Complementary Medicine, 22(10), 768-777. https://doi.org/10.1089/acm.2016.0193
![]() ![]() 4. Wu, L.-K., Chen, Y.-C., Hung, C.-S., Yen, C.-Y., Chang Chien, C.-Y., Ciou, J.-R., Torng, H.-H., Chang, Y.-C., Hua, S., Lu, P.-N., Liu, Y.-Y., Lai, C.-Y., Kung, Y.-L., Huang, H.-K., Chen, Z.-K., & Ho, T.-J. (2023). The efficacy and safety of cupping as complementary and alternative therapy for metabolic syndrome: A systematic review and meta-analysis. Medicine, 102(13), e33341. https://doi.org/10.1097/MD.0000000000033341
![]() ![]() ![]() 5. Meyari, A., Ramezani Tehrani, F., Biglarkhani, M., Mokaberinejad, R., & Tansaz, M. (2017). A review on the effects of wet-cupping (Hijamat) on fasting blood sugar. Indo American Journal of Pharmaceutical Sciences, 4(9), 2853-2859. https://doi.org/10.5281/zenodo.888223
6. Tagil, S. M., Celik, H. T., Ciftci, S., Kazanci, F. H., Arslan, M., Erdamar, H., Kesik, Y., & Dane, S. (2014). Wet-cupping removes oxidants and decreases oxidative stress. Complementary Therapies in Medicine, 22(6), 1032-1036. https://doi.org/10.1016/j.ctim.2014.10.008
![]() ![]() 7. Meigs, J. B., Larson, M. G., Fox, C. S., Keaney, J. F., Vasan, R. S., & Benjamin, E. J. (2007). Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: The Framingham Offspring Study. Diabetes Care, 30(10), 2529-2535. https://doi.org/10.2337/dc07-0817
![]() 8. Robertson, R. P., & Harmon, J. S. (2007). Pancreatic islet β-cell and oxidative stress: The importance of glutathione peroxidase. FEBS Letters, 581(19), 3743-3748. https://doi.org/10.1016/j.febslet.2007.03.087
![]() ![]() ![]() ![]() 9. Danyali, F., Vaez Mahdavi, M. R., Ghazanfari, T., & Naseri, M. (2009). Comparison of the biochemical, hematological and immunological factors of “cupping” blood with normal venous blood. Physiology and Pharmacology, 13(1), 78-87. Retrieved from https://ppj.phypha.ir/article-1-500-en.pdf
10. Rahman, H. S., Ahmad, G. A., Mustapha, B., Al-Rawi, H. A., Hussein, R. H., Amin, K., Othman, H. H., & Abdullah, R. (2020). Wet cupping therapy ameliorates pain in patients with hyperlipidemia, hypertension, and diabetes: A controlled clinical study. International Journal of Surgery Open, 26, 10-15. https://doi.org/10.1016/j.ijso.2020.07.003
![]() 11. Nik Husain, N.-R., Mohd Hairon, S., Mohd Zain, R., Bakar, M., Get Bee, T., & Ismail, M. S. (2020). The effects of wet cupping therapy on fasting blood sugar, renal function parameters, and endothelial function: A single-arm intervention study. Oman Medical Journal, 35(2), e108. https://doi.org/10.5001/omj.2020.26
![]() ![]() ![]() 12. Wang, X., Zhang, X., Elliott, J., Liao, F., Tao, J., & Jan, Y.-K. (2020). Effect of pressures and durations of cupping therapy on skin blood flow responses. Frontiers in Bioengineering and Biotechnology, 8, Article 608509. https://doi.org/10.3389/fbioe.2020.608509
![]() ![]() 13. Meng, X., Wang, Y., Piao, S., Lv, W., Zhu, C., Mu, M., Li, D., Liu, H., & Guo, Y. (2022). Wet cupping therapy improves local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis. Chinese Journal of Integrative Medicine, 20(4), 354-361. https://doi.org/10.1007/s11655-017-2925-7
![]() ![]() ![]() 14. Fernández-Real, J. M., Peñarroja, G., Castro, A., García-Bragado, F., Hernández-Aguado, I., & Ricart, W. (2002). Blood letting in high-ferritin type 2 diabetes: Effects on insulin sensitivity and β-cell function. Diabetes, 51(4), 1000-1004. https://doi.org/10.2337/diabetes.51.4.1000
![]() 15. Joushan, A., Rajabi, S., Agin, K., Ayati, M. H., Jafari, F., Daneshfard, B., Athari, S. S., Ghahremani, Z., & Choopani, R. (2022). Wet cupping therapy ameliorates the inflammatory responses in mice model of allergic asthma: An experimental histopathological study. Traditional & Integrative Medicine, 7(1), 40-51. Retrieved from https://jtim.tums.ac.ir/index.php/jtim/article/view/404
![]() 16. Khasawneh, M. A., Al-Momani, H. M., Alnimer, R., Al-Odat, M., & Atoum, M. (2024). The impact of wet cupping on haematological and inflammatory parameters in a sample of Jordanian team players. Heliyon, 10(1), e22832. Retrieved from https://www.sciencedirect.com/science/article/pii/S2405844024001234
17. Al-Tawarah, N. M. (2022). Long-term after-effects of wet cupping therapy on some inflammatory mediators and antioxidant parameters in Jordanian healthy adult men. Bahrain Medical Bulletin, 44(3), 1025-1030. Retrieved from https://www.bahrainmedicalbulletin.com/Sep_2022/BMB-22-266.pdf
18. Al Jaouni, S. K., Rohaiem, S. M., Almuhayawi, M. S., Godugu, K., Almughales, J., Kholi, S. M., Al-Raddadi, R., Bukhari, M., & Mousa, S. A. (2023). Wet cupping therapy in the modulation of inflammation in patients with pain. RPS Pharmacy and Pharmacology Reports, 2(2), 1-7. https://doi.org/10.1093/rpsppr/rqad004
19. Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456-480. https://doi.org/10.4239/wjd.v6.i3.456
![]() ![]() ![]() 20. Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2003). Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 52(1), 1-8. https://doi.org/10.2337/diabetes.52.1.1
![]() ![]() ![]() 21. Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2022). Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules, 27(3), 950. https://doi.org/10.3390/molecules27030950
![]() ![]() ![]() 22. Ersoy, S., Altinoz, E., Benli, A. R., Erdemli, M. E., Aksungur, Z., Gozukara Bag, H., & Engin, V. S. (2019). Investigation of wet cupping therapy’s effect on oxidative stress based on biochemical parameters. European Journal of Integrative Medicine, 30, 100946. https://doi.org/10.1016/j.eujim.2019.100946
![]() 23. Bashiri, H., Bozorgomid, A., & Shojaeimotlagh, V. (2020). Efficacy of Hijamat (wet cupping therapy) in Iranian patients with nonalcoholic fatty liver disease: A controlled clinical trial. Turkish Journal of Medical Sciences, 50(2), 354-359. https://doi.org/10.3906/sag-1907-82
![]() ![]() ![]() 24. Sutriyono, S., Robbina, M. R., & Ndii, M. Z. (2019). The effects of wet cupping therapy in blood pressure, glucose, uric acid and total cholesterol levels. Biology, Medicine, & Natural Product Chemistry, 8(2), 33-36. https://doi.org/10.14421/biomedich.2019.82.33-36
![]() ![]() 25. Irawan, S. A., Indrastuti, M. A., Prasetyo, A., & Susilowati, R. (2022). Application of wet cupping therapy in reducing blood pressure among patients with hypertension. Journal of Nursing Practice, 6(1), 75-82. https://doi.org/10.30994/jnp.v6i1.243
26. Liang, C.-M., Hu, H., & Wang, X.-M., et al (2019). A clinical study on medical cupping for metabolic syndrome with abdominal obesity. Traditional Medicine Research, 4(1), 4-11. Retrieved from https://www.scienceopen.com/document_file/b8e634fd-bb79-495a-96a6-4e2f2b271dad/API/tmr-04-01-4.pdf
![]() 27. Rohayu, S. B., Wahyudi, K., & Gerbab, S. (2022). The effect of cupping on blood pressure in hypertension. Science Midwifery, 10(4), 3143-3148. Retrieved from https://www.midwifery.iocspublisher.org/index.php/midwifery/article/view/778
![]() ![]() 28. Spaan, J. J., Houben, A. J. H. M.n., Musella, A., Ekhart, T., Spaanderman, M. E. A., & Peeters, L. L. H. (2010). Insulin resistance relates to microvascular reactivity 23 years after preeclampsia. Microvascular Research, 80(3), 417-421. https://doi.org/10.1016/j.mvr.2010.07.003
![]() ![]() 29. Hamburg, N. M., McMackin, C. J., Huang, A. L., Shenouda, S. M., Widlansky, M. E., Schulz, E., Gokce, N., Ruderman, N. B., Keaney, J. F., & Vita, J. A. (2007). Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2650-2656. https://doi.org/10.1161/ATVBAHA.107.153288
![]() ![]() ![]() 30. López-Galán, E., Montoya-Pedrón, A., Barrio-Deler, R., Sánchez-Hechavarría, M. E., Muñoz-Bustos, M. E., & Muñoz-Bustos, G. A. (2023). Reactive hyperemia and cardiovascular autonomic neuropathy in type 2 diabetic patients: A systematic review of randomized and nonrandomized clinical trials. Medicina, 59(4), 770. https://doi.org/10.3390/medicina59040770
![]() ![]() ![]() 31. Perkins, J. M., Joy, N. G., Tate, D. B., & Davis, S. N. (2015). Acute effects of hyperinsulinemia and hyperglycemia on vascular inflammatory biomarkers and endothelial function in overweight and obese humans. American Journal of Physiology-Endocrinology and Metabolism, 309(2), E168-E176. https://doi.org/10.1152/ajpendo.00064.2015
![]() ![]() ![]() 32. Park, M. S., Lee, S., Baek, Y., Lee, J., Park, S. S., Cho, J. H., Jin, H. J., & Yoo, H. R. (2023). Characteristics of insulin resistance in Korean adults from the perspective of circadian and metabolic sensing genes. Genes & Genomics, 45(12), 1475-1487. https://doi.org/10.1007/s13258-023-01443-0
![]() ![]() ![]() ![]() 33. Barbieri, M., Ragno, E., Benvenuti, E., Zito, G. A., Corsi, A., Ferrucci, L., & Paolisso, G. (2001). New aspects of the insulin resistance syndrome: impact on haematological parameters. Diabetologia, 44, 1232-1237. https://doi.org/10.1007/s001250100634
![]() ![]() ![]() 34. Jehn, M., Clark, J. M., & Guallar, E. (2004). Serum ferritin and risk of the metabolic syndrome in U.S . adults. Diabetes Care, 27(10), 2422-2428. https://doi.org/10.2337/diacare.27.10.2422
![]() ![]() ![]() 35. Zacharski, L. R., Ornstein, D. L., Woloshin, S., & Schwartz, L. M. (2000). Association of age, sex, and race with body iron stores in adults: Analysis of NHANES III data. American Heart Journal, 140(1), 98-104. https://doi.org/10.1067/mhj.2000.106646
![]() ![]() 36. McDowell, L. A., Kudaravalli, P., Chen, R. J., Sticco, K. L. (2024). January. 11. Iron overload. StatPearls StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK526131/
37. Wilson, J. G., Lindquist, J. H., Grambow, S. C., Crook, E. D., & Maher, J. F. (2003). Potential role of increased iron stores in diabetes. The American Journal of the Medical Sciences, 325(6), 332-339. https://doi.org/10.1097/00000441-200306000-00004
![]() ![]() 38. Nemeth, E., & Ganz, T. (2021). Hepcidin-ferroportin interaction controls systemic iron homeostasis. International Journal of Molecular Sciences, 22(12), 6493. https://doi.org/10.3390/ijms22126493
![]() ![]() ![]() 39. Zeidan, R. S., Martenson, M., Tamargo, J. A., McLaren, C., Ezzati, A., Lin, Y., Yang, J. J., Yoon, H. S., McElroy, T., Collins, J. F., Leeuwenburgh, C., Mankowski, R. T., & Anton, S. (2024). Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging, 28(5), 100212. https://doi.org/10.1016/j.jnha.2024.100212
![]() ![]() 40. Equitani, F., Fernandez-Real, J. M., Menichella, G., Koch, M., Calvani, M., Nobili, V., Mingrone, G., & Manco, M. (2008). Bloodletting ameliorates insulin sensitivity and secretion in parallel to reducing liver iron in carriers of HFE gene mutations. Diabetes Care, 31(1), 3-8. https://doi.org/10.2337/dc07-0939
![]() ![]() ![]() 41. Houschyar, K. S., Lüdtke, R., Dobos, G. J., Kalus, U., Broecker-Preuss, M., Rampp, T., Brinkhaus, B., & Michalsen, A. (2012). Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: Results from a randomized clinical trial. BMC Medicine, 10, Article 54.https://doi.org/10.1186/1741-7015-10-54
![]() ![]() ![]() 42. Meyari, A., Tansaz, M., Ramezani Tehrani, F., Mokaberinejad, R., Biglarkhani, M., Bidhendi Yarandi, R., & Fayaz, M. (2021). Wet-cupping on calf muscles in polycystic ovary syndrome: A quasi-experimental study. Journal of Complementary and Integrative Medicine, 19(2), 441-447. https://doi.org/10.1515/jcim-2020-0458
![]() ![]() 43. Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine, 340(6), 448-454. https://doi.org/10.1056/NEJM199902113400607
![]() ![]() 44. Ganz, T., & Nemeth, E. (2012). Hepcidin and iron homeostasis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1434-1443. https://doi.org/10.1016/j.bbamcr.2012.01.014
![]() ![]() ![]() 45. Nemeth, E., Rivera, S., Gabayan, V., Keller, C., Taudorf, S., Pedersen, B. K., & Ganz, T. (2004). IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. The Journal of Clinical Investigation, 113(9), 1271-1276. https://doi.org/10.1172/JCI20945
![]() ![]() ![]() 46. Saeed, A. A. M., Badulla, W. F. S., & Sheikh, G. A. A. (2021). The effect of wet cupping therapy (Al-Hijamah) on some blood components: A comparative study. Electronic Journal of University of Aden for Basic and Applied Sciences, 2(3), 124-130. https://doi.org/10.47372/ejua-ba.2021.3.106
![]() ![]() 47. Fahimi, M., Kazemikhoo, N., Hashem Dabaghian, F., Iravani, A., Vahabi, F., Azadi, M., Sadeghi, S., Mirkhani, F., Arjmand, M., Zamani, Z., Ansari, F., & Ghods, R. (2016). Effects of wet cupping on blood components specially skin-related parameters of healthy cases: A case control metabonomic study. Journal of Skin and Stem Cell, 3(2), e12654. https://doi.org/10.5812/jssc.12654
![]() |
|