AbstractObjectivesIn this study, we used network-based systems pharmacology analysis and molecular docking methods to predict the therapeutic mechanism of Scutellariae Radix on viral pneumonia.
MethodsWe screened active components of Scutellariae Radix and its’ genes by TCMSP. Also, we extracted viral pneumonia related target genes through Gene Cards, CTD and DisGeNet. To construct Protein-protein Interaction, STRING database was used. For functional enrichment, using SRplot platform, genes were classified by 3 categories: cellular component (CC), molecular function (MF) and biological process (BP). Molecular docking was conducted by AutoDockTools (version 4.2.6).
Results32 Network-based systematic pharmacology analysis identified 37 target genes associated with baicalein. Based on the network and gene ontology analysis of the active ingredient's target genes and disease target genes, we identified nine core genes (AKT1, BAX, BCL2, CASP3, HIF1A, PTGS2, RELA, TP53, VEGFA) and HSP90 as involved. Notably, HIF1A showed the highest relevance, overlapping with two or more utilized programs. Hypoxia-inducible factor 1-alpha (HIF-1α) has been implicated in the expression of inflammatory cytokines, the induction of hypoxia, and the triggering of cytokine storms. Baicalein, a major component of SR, binds to both HIF-1α and HSP90, suggesting that it may be a possible targeted treatment for viral pneumonia.
ConclusionsBaicalein may bind to HIF-1α to control inflammation caused by viral infectious diseases and may also regulate hypoxic conditions to prevent impairment of lung function caused by an overactive immune system. These findings suggest further research into the molecular mechanisms involved in hypoxia and provide a scientific basis for improving the treatment of viral infectious diseases.
참고문헌1. Ruuskanen, O, Lahti, E, Jennings, LC, & Murdoch, DR. (2011). Viral pneumonia. Lancet, 377(1), 1264-75. 10.1016/S0140-6736(10)61459-6
![]() ![]() ![]() 2. Lee, JY, Kim, YJ, Lee, ES, & Lee, YS. (2019). Seasonal trend and mortality in adults with viral pneumonia. Journal of the Korean Society of Emergency Medicine, 30(3), 265-72.
3. Pagliano, P, Sellitto, C, Conti, V, Ascione, T, & Esposito, S. (2021). Characteristics of viral pneumonia in the COVID-19 era: an update. Infection, 49(1), 607-16. 10.1007/s15010-021-01603-y
![]() ![]() 4. Shun-Shin, M, Thompson, M, Heneghan, C, Perera, R, Hamden, A, & Mant, D. (2009). Neuraminidase inhibitors for treatment and prophylaxis of influenza in children: Systematic review and meta-analysis of randomised controlled trials. BMJ, 339(1), 449. 10.1136/bmj.b3172
![]() 5. Jartti, T, Vanto, T, Heikkinen, T, & Ruuskanen, O. (2002). Systemic glucocorticoids in childhood expiratory wheezing: relation between age and viral etiology with efficacy. Pediatr Infect Dis J, 21(9), 873-8. 10.1097/00006454-200209000-00019
![]() ![]() 6. Stockman, LJ, Bellamy, R, & Garner, P. (2006). SARS: Systematic Review of Treatment Effects. PLoS Med, 3(9), 1525-31. 10.1371/journal.pmed.0030343
![]() 7. Falagas, ME, Vouloumanou, EK, Baskouta, E, Rafailidis, PI, Polyzos, K, & Rello, J. (2010). Treatment options for 2009 H1N1 influenza: Evaluation of the published evidence. International Journal of Antimicrobial Agents, 35(1), 421-30. 10.1016/j.ijantimicag.2010.01.006
![]() ![]() 8. Kwon, JE, Ahn, JY, & Choi, BS. (2017). Two patients with Mycoplasma pneumoniae pneumonia progressing to acute respiratory distress syndrome. Allergy, Asthma & Respiratory Disease, 5(3), 169. 10.4168/aard.2017.5.3.169
9. National University of Dept. of Internal Medicine. Pulmonary system. Internal Medicine Pulmonary system. Seoul. Han culture;(2002). p. 249-313.
10. Shin, WY, Hyun, MK, Jeong, BM, Choi, EY, Yoon, CH, & Jeong, JC. (2005). A clinical report of one old aged patient with pneumonia. Korean J Orient Int Med, 26(1), 229-35.
11. Hwang DY. Bangyakhappyeon. 14th ed. Seoul. Namsandang;(2017). p. 137
12. The Committee of Herbalogy textbook. Herbalogy, (2013.
13. Liu, H, Ye, F, Sun, Q, Liang, H, Li, C, & Li, S, et al. (2021). Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem, 36(1), 497-503. 10.1080/14756366.2021.1873977
![]() ![]() ![]() 14. Xu, X, Zhang, W, Huang, C, Li, Y, Yu, H, & Wang, Y, et al. (2012). A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci, 13(6), 6964-82. 10.3390/ijms13066964
![]() ![]() ![]() 15. Zhuang, Z, Wen, J, Zhang, L, Zhang, M, Zhong, X, & Chen, H, et al. (2020). Can network pharmacology identify the anti-virus and anti-inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur J Integr Med, 37(1), 1-10. 10.1016/j.eujim.2020.101139
![]() 16. Szklarczyk, D, Gable, AL, Lyon, D, Junge, A, Wyder, S, & Huerta-Cepas, J, et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 47(D1), D607-13. 10.1093/nar/gky1131
![]() ![]() 17. Wu, G, Hao, Q, Liu, B, Zhou, J, Fan, C, & Liu, R. (2022). Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine, 101(1), E30853. 10.1097/MD.0000000000030853
![]() ![]() ![]() 18. Burnett, BP, Jia, Q, Zhao, Y, Levy, RM, & Chen, S. (2007). A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food, 2007, 10(3), 442-51. 10.1089/jmf.2006.255
![]() 19. Hwang, WD, Im, YG, Son, BY, Park, C, Park, D, & Choi, YH. (2013). Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells. J Life Sci, 23(4), 518-28. 10.5352/JLS.2013.23.4.518
![]() 20. Shen, YC, Chiou, WF, Chou, YC, & Chen, CF. (2003). Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J Pharmacol, 465(1–2), 171-81. 10.1089/jmf.2006.255
![]() ![]() 21. Yong, HS, & Ko, SG. (2004). Inhibition of Cellular Proliferation and Apoptosis by Scutellaria Bicalensis in MDA-MB-231 Breast Cancer Cells. Korean J Orient Int Med, 25(3), 451-60.
22. Heo J. Dongeuibogam. 5th ed. Hadong. Dongeuibogam Publishser;(2016). p. 259
23. Moya, AS, Elena, SF, Bracho, A, Miralles, R, & Barrio, E. (2000). The evolution of RNA viruses: A population genetics view RNA Viruses: Biological and Population Properties. PNAS, 97(13), 6967-73. 10.1073/pnas.97.13.6967
![]() ![]() 24. Zhao, J, Tian, S, Lu, D, Yang, J, Zeng, H, & Zhang, F, et al. (2021). Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine, 85(1), 1-15. 10.1016/j.phymed.2020.153315
![]() 25. Brocard, M, Lu, J, Hall, B, Borah, K, Moller-Levet, C, & Georgana, I, et al. (2021). Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages. J Virol, 95(20), e01134-21. 10.1128/JVI.01134-21
![]() ![]() 26. Wang, J, Basagoudanavar, SH, Wang, X, Hopewell, E, Albrecht, R, & García-Sastre, A, et al. (2010). NF-κB RelA Subunit Is Crucial for Early IFN-β Expression and Resistance to RNA Virus Replication. The Journal of Immunology, 185(3), 1720-9. 10.4049/jimmunol.1000114
![]() 27. Wang, Y, Guo, X, Fan, X, Zhang, H, Xue, D, & Pan, Z. (2022). The Protective Effect of Mangiferin on Osteoarthritis: An In Vitro and In Vivo Study. Physiol Res, 71(1), 135-45. 10.33549/physiolres.934747
![]() ![]() ![]() 28. Korbecki, J, Kojder, K, Kapczuk, P, Kupnicka, P, Gawrońska-Szklarz, B, & Gutowska, I, et al. (2021). The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors. International Journal of Molecular Sciences, 22(1), 1-30. 10.3390/ijms22020843
29. Kim, EJ, Kim, GT, Kim, BM, Lim, EG, Kim, SY, & Kim, YM. (2017). Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells. BMC Complement Altern Med, 17(1), 1-12. 10.1186/s12906-017-1702-7
![]() ![]() 30. Semenza, GL. (2001). HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol, 13(2), 167-71. 10.1016/s0955-0674(00)00194-0
![]() ![]() 31. Hwang, KY, Oh, YT, Yoon, H, Lee, J, Kim, H, & Choe, W, et al. (2008). Baicalein suppresses hypoxia-induced HIF-1α protein accumulation and activation through inhibition of reactive oxygen species and PI 3-kinase/Akt pathway in BV2 murine microglial cells. Neurosci Lett, 444(3), 264-9. 10.1016/j.neulet.2008.08.057
![]() ![]() 32. Fröhlich, S, Boylan, J, & Mcloughlin, P. (2013). Hypoxia-induced inflammation in the lung: A potential therapeutic target in acute lung injury? American Journal of Respiratory Cell and Molecular Biology, 48(1), 271-9. 10.1165/rcmb.2012-0137TR
![]() 33. Serebrovska, ZO, Chong, EY, Serebrovska, TV, Tumanovska, LV, & Xi, L. (2020). Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica. Springer Nature, 41(1), 1539-46. 10.1038/s41401-020-00554-8
34. Brahimi-Horn, C, Mazure, N, & Pouysségur, J. (2005). Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cellular Signalling, 17(1), 1-9. 10.1016/j.cellsig.2004.04.010
![]() ![]() 35. Liu, J, Liu, J, Tong, X, Peng, W, Wei, S, & Sun, T, et al. (2021). Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther, 15(1), 3255-76. 10.2147/DDDT.S319786
![]() ![]() 36. Zeng, Z, Hu, J, Jiang, J, Xiao, G, Yang, R, & Li, S, et al. (2021). Network Pharmacology and Molecular Docking-Based Prediction of the Mechanism of Qianghuo Shengshi Decoction against Rheumatoid Arthritis. Biomed Res Int, 2021(1), 1-15. 10.1155/2021/6623912
![]() 37. Li, X, Tang, H, Tang, Q, & Chen, W. (2021). Decoding the Mechanism of Huanglian Jiedu Decoction in Treating Pneumonia Based on Network Pharmacology and Molecular Docking. Front Cell Dev Biol, 18(9), 1-15. 10.3389/fcell.2021.638366
![]() 38. Li, C, Pan, J, Xu, C, Jin, Z, & Chen, X. (2022). A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. Front Cell Dev Biol, 9(1), 1-15. 10.3389/fcell.2021.740266
![]() 39. Fan, L, Warnecke, A, Weder, J, Preller, M, & Zeilinger, C. (2022). Triiodothyronine Acts as a Smart Influencer on Hsp90 via a Triiodothyronine Binding Site. Int J Mol Sci, 23(13), 1-12. 10.3390/ijms23137150
![]() 40. Ramos-Duarte, VA, Orlowski, A, Jaquenod de Giusti, C, Corigliano, MG, Legarralde, A, & Mendoza-Morales, LF, et al. (2024). Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen. Vaccine, 42(14), 3355-3364. 10.1016/j.vaccine.2024.04.036
![]() ![]() |
|