Home | Register | Login | Inquiries | Alerts | Sitemap |  


Advanced Search
JKM > Volume 46(2); 2025 > Article
Noh and Jo: Effect of Myrrha Water Extract on Psoriasis-Like Skin Inflammation

Abstract

Objectives

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocyte hyperproliferation and increased inflammatory signaling. Commiphora myrrha (myrrh), a traditional medicinal resin used in East Asian herbal medicine, has been applied to treat skin-related ailments due to its anti-inflammatory and healing properties. This study investigated the potential anti-psoriatic effects of aqueous myrrh extract in an in vitro psoriatic keratinocyte model using HaCaT cells.

Methods

HaCaT keratinocytes were stimulated with a cytokine mixture (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α; collectively called M5) to mimic psoriatic conditions. Cell viability after aqueous myrrh extract treatment was evaluated using the MTT assay. The expression of keratin 6 (KRT6), a marker of hyperproliferation, was measured by quantitative real-time PCR. mRNA levels of inflammatory cytokines (IL-6, TNF-α, IL-17, IL-22) and chemokines (MCP-1, CCL2, CCL5, CXCL1, CXCL8) were also analyzed.

Results

Aqueous myrrh extract showed cytotoxicity at 1 mg/mL, whereas lower concentrations (0.05–0.5 mg/mL) were non-toxic and used in further experiments. It significantly reduced M5-induced KRT6 expression, indicating reduced hyperproliferation. It also suppressed IL-6, IL-17, and IL-22 expression, though TNF-α reduction was not significant. Among chemokines, CCL2, CCL5, CXCL1, and CXCL8 were significantly downregulated, while MCP-1 was unaffected.

Conclusions

Aqueous myrrh extract alleviates keratinocyte hyperproliferation and inflammatory mediator expression in a psoriatic model. Its traditional use and demonstrated efficacy suggest myrrh as a promising candidate for anti-psoriatic therapy development.

Fig. 1
Cytotoxic effects of Myrrha water extract in HaCaT cells.
jkm-46-2-84f1.gif
Fig. 2
Effects of Myrrha water extract on mRNA expression of KRT6 in HaCaT cells.
jkm-46-2-84f2.gif
Fig. 3
Effects of Myrrha water extract on mRNA expression of IL-6, TNF-α, IL-17 and IL-22 in HaCaT cells.
jkm-46-2-84f3.gif
Fig. 4
Effects of Myrrha water extract on mRNA expression of MCP-1, CCL2, CCL5, CXCL1, and CXCL8 in HaCaT cells.
jkm-46-2-84f4.gif
Table 1
Primer Sequence of SYBR Green Real-Time PCR
Name Direction Sequence
HPRT Forward 5′-TGA CAC TGG CAA AAC AAT GCA–3′
Reverse 5′-GGT CCT TTT CAC CAG CAA GCT-3′

KRT6 Forward 5′-GGG TTT CAG TGC CAA CTC AG–3′
Reverse 5′-CCA GGC CAT ACA GAC TGC GG-3′

TNF-α Forward 5′-CCT CTC TCT AAT CAG CCC TCT G-3′
Reverse 5′-GAG GAC CTG GGA GTA GAT GAG-3′

IL-6 Forward 5′-ACT CAC CTC TTC AGA ACG AAT TG-3′
Reverse 5′-CCA TCT TTG GAA GGT TCA GGT TG-3′

IL-17 Forward 5′-TCT GTG ATC TGG GAG GCA AAG-3′
Reverse 5′-CGT TCC CAT CAG CGT TGA T-3′

IL-22 Forward 5’-CGT TCC CAT CAG CGT TGA T-3′ ′
Reverse 5′-GGA TAT GCA GGT CAT CAC CTT CA-3′

CCL5 Forward 5′-CTA CTG CCC TCT GCG CTC C-3′
Reverse 5′-TGG TGT CCG AGG AAT ATG GG-3′

CCL2 Forward 5′-CAC CAG CAG CAA GTG TCC C-3′
Reverse 5′-CCA TGG AAT CCT GAA CCC AC-3′

CXCL1 Forward 5′-CCT CAA TCC TGC ATC CC-3′
Reverse 5′-AGT TGG ATT TGT CAC TGT-3′

CXCL8 Forward 5′-CCC CTA AGA GCA GTA ACA GTT CCT-3′
Reverse 5′-GGT GAA GAT AAG CCA GCC AAT C-3′

참고문헌

1. Lowes, M. A., Bowcock, A. M., & Krueger, J. G. (2007). Pathogenesis and therapy of psoriasis. Nature, 445(7130), 866-873. https://doi.org/10.1038/nature05663
crossref pmid pdf

2. Di Cesare, A., Di Meglio, P., & Nestle, F. O. (2009). The IL-23/Th17 axis in the immunopathogenesis of psoriasis. The Journal of Investigative Dermatology, 129(6), 1339-1350. https://doi.org/10.1038/jid.2009.59
crossref pmid

3. Boehncke, W. H., & Schön, M. P. (2015). Psoriasis. The Lancet, 386(9997), 983-994. https://doi.org/10.1016/S0140-6736(14)61909-7
crossref pmid

4. Herbology Textbook Compilation Committee. (2020). Herbal Medicine. 4th Ed. Seoul. Youngrimsa;p. 442-443.


5. Shen, T., Li, G. H., Wang, X. N., & Lou, H. X. (2012). The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 142(2), 319-330. https://doi.org/10.1016/j.jep.2012.05.025
crossref pmid

6. Su, S., Wang, T., Duan, J. A., Zhou, W., Hua, Y. Q., & Tang, Y. P. (2012). Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. Journal of Ethnopharmacology, 134(2), 251-258. https://doi.org/10.1016/j.jep.2010.12.003
crossref pmid

7. Dolara, P., Corte, B., Ghelardini, C., Pugliese, A. M., Cerbai, E., Menichetti, S., & Lo Nostro, A. (2000). Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Medica, 66(4), 356-358. https://doi.org/10.1055/s-2000-8532
crossref pmid

8. Alahmari, A. (2023). Aqueous Myrrh Extract Relieves Oxidative Stress-Dependent Nephrotoxicity Induced by Ethanol in Male Rats. Parkistan Journal of Zoology, 56(3), 1089-1099. https://dx.doi.org/10.17582/journal.pjz/20230207120254
crossref

9. Shin M.(2010). Clinical traditional herbalogy. Seoul. Yeong. Lim Publishing;p. 748-749.


10. Sohn, Y. H., Kim, E. H., & Lee, B. W. (2006). A study of external treatment of the Wai-Ke-Zheng-Zong. Journal of Korean medical classics, 19(1), 110-127.


11. Kwon, H. Y., & Kim, J. H. (2009). An overview of Korean Medicine for burn injury. Korean Journal of Acupuncture, 26(4), 152-172.


12. Batiha, G. E., Wasef, L., Teibo, J. O., Shaheen, H. M., Zakariya, A. M., Akinfe, O. A., Teibo, T. K. A., Al-Kuraishy, H. M., Al-Garbee, A. I., Alexiou, A., & Papadakis, M. (2023). Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-Schmiedeberg’s archives of pharmacology, 396(3), 405-420. https://doi.org/10.1007/s00210-022-02325-0
crossref pmid pmc pdf

13. Suliman, R. S., Alghamdi, S. S., Ali, R., Aljatli, D., Aljammaz, N. A., Huwaizi, S., Suliman, R., Kahtani, K. M., Albadrani, G. M., Barhoumi, T., Altolayyan, A., & Rahman, I. (2022). The Role of Myrrh Metabolites in Cancer, Inflammation, and Wound Healing: Prospects for a Multi-Targeted Drug Therapy. Pharmaceuticals (Basel, Switzerland), 15(8), 944. https://doi.org/10.3390/ph15080944
crossref pmid pmc

14. Jung, Y. H., Roh, Y. W., & Chong, M. (2022). Anti-inflammatory Effects of Myrrh Ethanol Extract on Particulate Matter-induced Skin Injury. The Journal of Korean Medicine, 43(3), 1-15. https://doi.org/10.13048/jkm.22026
crossref

15. Fatani, A. J., Alrojayee, F. S., Parmar, M. Y., Abuohashish, H. M., Ahmed, M. M., & Al-Rejaie, S. S. (2016). Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Experimental and Therapeutic Medicine, 12(2), 730-738. https://doi.org/10.3892/etm.2016.3398
crossref pmid pmc

16. Rahmani, A. H., Anwar, S., Raut, R., Almatroudi, A., Babiker, A. Y., Khan, A. A., Alsahli, M. A., & Almatroodi, S. A. (2022). Therapeutic potential of myrrh, a natural resin, in health management through modulation of oxidative stress, inflammation, and advanced glycation end products formation using in vitro and in silico analysis. Applied Sciences, 12(18), 9175. https://doi.org/10.3390/app12189175
crossref

17. Johnson-Huang, L. M., McNutt, N. S., Krueger, J. G., & Lowes, M. A. (2012). Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. Journal of Clinical Investigation, 122(2), 478-486.
crossref pmid pmc pdf

Editorial office contact information
3F, #26-27 Gayang-dong, Gangseo-gu Seoul, 157-200 Seoul, Korea
The Society of Korean Medicine
Tel : +82-2-2658-3627   Fax : +82-2-2658-3631   E-mail : skom1953.journal@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Developed in M2PI